Sunday, 12 August 2018

Working with elephants: ice breakers, interviews and interpreting Fiona Sach

I have just returned from a brilliant three week trip to Southern Africa, to present at the 34th International conference of the Society for Environmental Geochemistry and Health (SEGH). The conference was held in Livingstone, Zambia on the theme of ‘Geochemistry for Sustainable development'. (See Michael Watt's blog for more information on the conference). It was followed by a quick trip to South Africa to collect elephant tail hair and faecal samples (see my earlier blog) to be brought back to the UK for preparation and multi-element analysis at BGS.

During the conference icebreaker at the Royal Livingstone Hotel, I was invited to give an interview to the Zambian Times, explaining about my PhD research and the application that results from my research may have in the future, to aid in human-elephant conflict resolution. The following day, it was extremely exciting to see the conference featured within their newspaper and on local television.

At the conference I presented some initial data from recently conducted fieldwork showing how the phosphorus levels in the soil at the mine site are significantly higher than that sampled in the surrounding areas outside of the mine site. This supports the working hypothesis of the project, that African elephants (Loxodonta Africana) are being drawn towards a mining area just outside the Kruger National Park in South Africa, due to the unique geochemistry of the area. Previous studies have suggested that the soil in areas surrounding the mine, and associated plant samples may be low in minerals such as phosphorus, causing a deficiency in the plants, and driving the elephants to seek these minerals elsewhere. It is therefore thought that the elephants may be drawn towards to the mining area due to the mineral provision in the plants, soil and water. Unfortunately, elephant incursion into the mine and nearby human settlements has resulted in human-elephant conflict, causing risk of injury and loss of income. It is hoped that the results of the project may help to inform key locations in the elephants’ home range where mineral-supplemented forage or mineral licks may be placed to reduce the drive to seek additional sources of minerals, thereby reducing human-elephant conflict.

Mineral and potentially toxic element (PTE) levels will be compared within and between elephant tail hair, blood, faecal and toenail samples, from elephants at the mine site and elephants within the wider national park. These tail hair samples from fifty animals from across the whole of the Kruger National Park, collected opportunistically over the last 10 years and stored within the SANParks Biobank, will contribute hugely towards calculating the baseline mineral and PTE levels in the species and help identify any key differences to the elephants living around the mine site. I am very excited to start working on analysing these tail hairs and beginning to interpret the data, especially as mineral levels in elephants has not previously been examined in matrices such as tail hair and toenails. Tail hair and toenails are potentially easier to collect and store in the field than blood and could offer a practical solution to assessing mineral status in the animal, both free-living and within captivity.

Method validation was made possible for this study by using samples from 20 elephants housed at 5 UK zoos. The zoos kindly donated a multitude of samples from their elephants and the environments in which they live, to enable identification of the optimum matrix for reflecting mineral profile in the species. The zoos in turn will benefit from knowledge exchange and will be able to see how mineral status in captive animals compares to wild counterparts. This may enable identification of any potential mineral deficiencies and enhance captive health and welfare.

I would like to thank the SANParks Biobank and South African National Parks Authorities (SANParks) for contributing samples to this work, and for hosting me at their lab in Skukuza to prepare the bio samples for transport to the UK. 


Friday, 10 August 2018

34th SEGH International Conference on Geochemistry for Sustainable Michael Watts

Michael Watts provides an insight into the 34th SEGH International Conference on Geochemistry for Sustainable Development that he recently attended at the Avani Victoria Falls Resort, Livingstone, Zambia from 2nd to 7th July 2018.

Delegates attending the annual Society for Environmental Geochemistry and Health (SEGH) conference were treated to a spectacular conference venue alongside the Zambezi and Victoria Falls in Zambia. Thankfully we were treated to an engaging and varied programme of 45 oral presentations and 46 poster presentations to avoid VicFalls becoming a distraction to the 100+ delegates from all over the world during the scientific programme, with the following themes:
  1. Industrial and Urban Development
  2. Agriculture
  3. Health
  4. Technologies
Whilst we had specialist presentations within each theme from the impact of mining to highly focussed talks about laboratory methods and mechanisms for nutrient/pollutant pathways, delegates also had a very healthy debate about corporate and social responsibility (CSR) for mining. Discussions were also had on ethics in science, with an audience participation talk from Kate Millar-University of Nottingham to round off the conference. In addition, presenters discussed activities where environmental sciences crossover with human and animal health. Presentations covered possible links between geochemistry and cancer from IARC-WHO, use of data for hazard-risk assessment criteria for contaminated soils and air pollution to implications for nutrient deficiencies and exposure to potentially harmful elements effecting wildlife.  Implications for food production and food safety were discussed due to fertiliser overuse, urban development, pollution and with an ever increasing theme on fisheries, in particular the value of aquaculture to provide food/nutrient sufficiency, but also implications for antimicrobial resistance in fish (AMR). Conservation Agriculture to promote crop resilience and improve their micronutrient content. Laboratory method/technology development, with applications on improving the understanding of mechanistic pathways for pollutants or nutrients were discussed using isotope tracers and/or elemental speciation, along with organic pollutants, biomarkers for ecological and human health monitoring.  Overall, each session was well attended throughout.

Poster presentations

Poster presentations were run across two evenings with social events, preceded by 90-second flash presentations, which generated a great deal of amusement with the delegates, given the competitiveness of the presenters to beat the clock – otherwise the audience would applaud at 90-seconds. This approach was certainly a big factor in helping to generate a relaxed atmosphere at the conference and encourage interaction between disciplines and levels of experience.  This made for two vibrant poster sessions giving the presenters the much deserved attention and recognition posters require, where often valuable nuggets of scientific progress are to be found at conferences.

Training Day

Many thanks to the volunteers who provided the training workshops on day 4 following on from three days of presentations.  The morning began with parallel sessions on an Introduction to QGIS given by Dr Daniel Middleton (IARC-WHO) alongside ‘Embedding Ethics in Experimental Design in Geochemistry Research’ by Dr Kate Millar (University of Nottingham), followed by ‘Reviewing manuscripts and getting published’ by Professor Jane Entwistle (Northumbria University).  The afternoon followed with an ‘Introduction to R’ by Professor Murray Lark (University of Nottingham) in parallel with ‘Epidemiologic study design and interpretation’ by Dr Valerie McCormack and Dr Joachim Schuz (IARC-WHO).  Given that the courses followed the conference programme and BOMA dinner, they were well attended with 18-20 in each of the technical courses and 11-16 in each of the vocational courses, with >50% of the participants from Africa.  Another blog will follow on the SEGH website to describe further outcomes from the training courses and how we will link these into the setting up of an Early Career Researchers group – more on this later.


Prizes were awarded to Elliott Hamilton (British Geological Survey) and Lin Peng (Cancer Hospital of Shantou University Medical College) for best Oral presentations and to Nswana Kafwamfwa (Zambia Agriculture Research Institute-ZARI) and Mumba Mwape (ZARI) for best Poster presentations.  Springer-Nature Publications provided book vouchers for 2 x $250 for Oral presentations and 2 x $150 for Poster presentations.

Social programme

The evening before the conference presentations started we held an ice-breaker at the Royal Livingstone Hotel alongside the Zambezi.  A stunning setting to relax delegates and get them mixing with one another.  Local media were present, with an article about the conference and SEGH appearing on page 2 of the Zambia Times the next day and interviews with delegates shown on local TV the following night – see @SocEGH Twitter for newspaper article #SEGH2018.

Days 1 & 2 were rounded off by the poster sessions, with food and drinks, leading up to the BOMA-conference dinner next to the Zambezi, some 100m upstream of Victoria Falls.  The food provided something for everyone, with a delicious braai accompanied by a local performing traditional dance and music, which gradually swept up even the most self-conscious people to dance the night away.  The willingness of everyone to let their hair down and have fun was quite something, truly down to the warmth and fun you find in Africa.

The fieldtrip incorporated a trip to a cultural village centre which I have to admit I didn’t attend, but I heard that it was an enriching visit to understand some of the local culture and to be welcomed into people’s homes – perhaps others can explain.  However, I did make the finale of the fieldtrip, the sunset cruise on the Zambezi.  This was a fantastic way to round off the conference with a gentle trip upstream along the Zambezi attempting to spot wildlife on the banks with nice food and drinks, which of course led to more music and dancing on the boat.  Many people continued their travels connecting with friends and family to make a holiday of the visit to the Victoria Falls region for wildlife viewing or crazy activities like bungee jumping or rafting the Zambezi.

SEGH Business

Whilst a lot of new connections were made and old cemented during the conference, SEGH also had a number of key tasks to perform for its future structure.  Most of all, that included restructuring the international board to have four representatives from each of the European, Americas, Asia/Pacific regions and to set up a new section in Africa to fill a gap in multidisciplinary communities.  Nominations will be called for shortly, with elections soon after.  We will ask for greater contributions from members to drive the society forward, this could be ad hoc for information gathering or if members want to participate on the advisory council or through the Early Career Researchers (ECR) group.  SEGH2018 was a big step in setting up the ECR, for which Jane Entwistle set out future plans to develop a programme of mentorship, training opportunities and interaction over a three year supported period whereby ECR members will be connected with appropriate SEGH members.  We have an initial grouping of 25 ECR’s from SEGH2018 to develop the programme, which will become available to others to balance the demographics as we establish the programme.  We also see this grouping as a test bed and for generating new ideas to develop SEGH, improving communication with social media and hopefully for succession management to run SEGH in the future.  ECR’s will have an opportunity to develop through to a Fellowship status for SEGH (FSEGH), as will senior researchers who have been engaged with SEGH for a number of years.  Jane Entwistle will follow up with more information on this later.

SEGH Journal

We reported that the impact factor for the SEGH journal, Environmental Geochemistry and Health (EGAH) increased again this year to 2.99, continuing its success as a home for multidisciplinary science.  Members can access the journal through the log-in button on the front page of Delegates, please remember we have a special issue in EGAH for the conference.  Please indicate your interest by the 20th August.  We will aim for a submission date of 12th October.


Many thanks to the people who helped to bring together the conference – there were many!  We had a lot of encouraging words about the conference, please do post any comments on Twitter.  In particular, many thanks to the sponsors who helped in keeping the social programme inclusive for all delegates – Agilent Technologies, First Quantum, Trace2O-Wagtech, Retsch, Spectro-Ametek and Chemetrix.


We look forward to a strong programme of conferences next year, with SEGH 2019 moving to Manchester in the UK, SEGH involvement in ISEGH in China, China-Ireland Cooperation in Galway-Ireland and we hope to run some smaller 1-2 day meetings in Africa and elsewhere to maintain engagement with members – if you have some ideas, do let us know.  Keep in touch with SEGH events through the website and do offer your scientific updates, comments or stories to and through @SocEGH on twitter and upcoming pages on Facebook.  We will post an updated version of the SEGH2018 conference abstract book in a week or so to account for the last minute changes to the programme – see

Michael Watts is Head of Inorganic Geochemistry at the University of Nottingham - British Geological Survey Centre for Environmental Geochemistry.

Wednesday, 8 August 2018

Scientists are people too: mentoring with the Social Mobility Coleen Murty

Coleen Murty is a PhD student funded through the BGS University Funding Initiative (BUFI) who has been taking part in the Social Mobility Foundation mentoring scheme. Many BUFI students are involved with activities outside their research such as volunteering and outreach programmes, making them much more rounded and contributing further to their personal development skills. Being a world leading geological survey, the BGS is dedicated to working for the benefit of society and thus, improving the social mobility of young people wishing to pursue a career in environmental sciences is highly relevant to what they do. 

The UK has one of the lowest social mobility indexes and highest inequality in the developed world. A low ability child from a high income family is 35% more likely to be a high earner than a high ability child from a low income family. Today employers focus on past academic ability/polish rather than potential, and gender/ethnicity rather than socio-economic background.

The Social Mobility Foundation (SMF) are a charity which aims to make a practical improvement in social mobility for high-achieving young people from disadvantaged backgrounds. Every year the SMF supports over 1500 year 12/S5 students across the UK, who have the ability to flourish at top universities and professions but lack the encouragement and networks to help them get there. This is my main reason for becoming a mentor with the charity in April 2018 and is the first time I’ve ever been part of such a rewarding and influential scheme that makes a positive difference to young people’s lives all over the UK. In addition to the mentoring scheme, the SMF offers other services as part of their programme such as helping students get industrial work placements etc.

Being a mentor allows me to share the knowledge and experiences I’ve had specialising in a science-based discipline and encourage future generations to pursue their chosen career path. This not only improves the skills, knowledge and confidence of a bright young person, it also allows me to develop my communication and feedback skills.  Mentoring gives you the opportunity for self-reflection, looking at how you got to where you are and what you’ve learned.

The process of mentoring generally involves providing an insight into a professional career which the student aspires to enter as you are likely to be the only person/one of the few people they’ve ever met in the sector and thus, your role as a mentor is invaluable to them. The SMF pair you with your mentee based on your profession and career sector they wish to enter.  The mentoring cycle runs for one year and mainly consists of communicating through email and possible meetings if your mentee is based in the same city (which isn’t always the case). As a mentor you can use different approaches to help your mentee reach their goals; this could be anything from providing insights of university life, giving advice on applications, personal statements or subject-specific guidance etc. Being based in Newcastle, all my e-mentoring work takes place here however the charity provides options to attend local/national meet ups where you can meet your mentee. The flexible mentoring approach allows email communications with your mentee to be as often as weekly or fortnightly, however the charity do prefer if this is at least once every fortnight so the mentee can really benefit from continual guidance and encouragement.

Overall, I highly recommend this scheme, it’s just one of the many support services offered by the SMF to help these school students in every way they can, plus it’s great to be involved with something out with the research as it can get isolating at times! The charity also provide support to mentors as we aren’t expected to know everything! So even if you’re not sure how to answer a question or provide guidance on personal statements (as it was a long time ago – I know mine was!), there is always someone there for advice in case its needed.

If you would like to know more about the Social Mobility Foundation, visit their website. There are many ways to get involved including: mentoring, providing work placements, offering venues and speakers for events etc. The charity are currently active in; Birmingham, Leeds, Liverpool, Newcastle, Glasgow, Manchester and London. However, they are working on regional expansion to reach students and professionals in areas with high social mobility issues.

To sign up for the next mentoring cycle with the Social Mobility Foundation then just click here.

Coleen Murty is supervised by Dr Christopher Vane (BGS) and Dr Geoff Abbott (Newcastle University). The aim of BUFI is to encourage and fund science at the PhD level. Currently the BGS supports over 100 PhD students based around 35 UK universities and research institutes. 

Friday, 3 August 2018

An in-depth look at rare earth elements from Victoria Honour

Victoria on fieldwork in Romania
I was lucky enough to work with the BGS for the research component of my MSc in Mining Geology at the Camborne School of Mines. After a whirlwind fortnight of fieldwork in north-east Romania (see my previous blog) I started looking at the rocks we collected in much greater detail than the naked eye allows. Through a combination of microscopy and geochemistry, my project aimed to provide an overview of rare earth element (REE) mineralisation from both a magmatic and hydrothermal perspective.

Rare earth elements are vital to many of today’s technologies, from electronics to green technologies; markets such as wind turbines, light technologies, hybrid and electric cars are all forecasting rapid growth in the coming years and so REE demand will rise. Ironically, REEs are not rare, their abundances in the crust are comparable to elements such as copper and bismuth. The name merely surmises the difficulties chemists first had in separating the elements from each other, and this still presents challenges for the minerals extractive industry today.

REE production and supply is dominated by China. In 2017 they supplied 95% of the world's REE. There is a global drive to reduce reliance on China for REE and the EU is providing encouragement for a domestic REE industry. 

One such, lesser known, European rare earth element deposit is where my project was focused: the igneous Ditrău Complex in Romania. It is an intrusion of magma within the earth’s crust (ca. 19 km diameter), which solidified over 200 million years ago. What makes it interesting to economic geologists is a series of carbonate veins, 1-2 m wide, enriched in REE. There are also occurrences of niobium and molybdenum within the intrusion.

Since finishing my MSc I’ve started my PhD, so writing everything up into a paper had to take a bit of backseat, but finally… our paper on the Ditrău Complex has been published! Below is a little summary of our main findings from the open access (!) paper, so if you're interested, you can read the paper in full here.

From fieldwork observations we began to see that the intrusion had been emplaced in a broadly horizontal magma chamber, which had subsequently been tilted towards the east during a large-scale mountain building event (the Variscan orogeny). The tilting meant that on fieldwork, we had a fantastic transect across the range of crystallised rocks: from the most mafic (low SiO2 contents) in the north-west to the most evolved (high SiO2) in the east. The south east of the area was really interesting: the rocks were highly altered and through a combination of field observations and geochemistry, we identified this as the roof zone of the solidified magma chamber.

This turned out to be an important observation; from previous work, the Ditrău Complex is known to have had co-existing magma and fluid phases, i.e. a hydrothermal system developed during the latter stages of crystallisation. In our geochemical results and petrography, we saw evidence of this fluid using mafic dykes as pathways, or chimneys, up through the crystallising mush, leaving a characteristic geochemical and
petrological ‘fingerprint’ of alteration. These fluids leached a range of economically interesting elements from the rocks they passed through. Ultimately, the buoyant fluids reached the top of the intrusion (the roof zone) and were deposited along fractures in the rock, plausibly due to pressure decreases. These fractures are rich in minerals such as zircon and pyrochlore. In this area of the Ditrău Complex, the most common rock we picked up on fieldwork was dusty white with a spider web of criss-crossing red fractures.

The major REE mineralisation is hosted in carbonate-rich veins that crosscut the Ditrău Complex. We wanted to establish if these veins were crystallised from the same fluid that altered the roof zone of the complex. To do this we looked at the chemistry of a particular mineral: apatite. This is a great mineral, apart from being what your teeth are made out of, it is distributed throughout the Ditrău Complex so we could use the apatite crystals to establish if they crystallised from liquids of different compositions. Crucially, these REE-rich carbonate veins are compositionally distinct from the other rocks, including the altered roof zone. So the complex had a late-stage REE- and carbonate-rich fluid that cut through the crystal mush. The source could be a later carbonatite emplaced below the complex, but this hypothesis needs to be further explored. If you’re curious about what carbonatite looks like, Ol Doinyo Lengai, "Mountain of God" in the Maasai language, is the only place on earth erupting a carbonate magma today.

This work was funded by the EURARE project, which aimed to set the basis for a European REE industry. Work on the samples collected from the Ditrău Complex is continuing, and part of this work hopes to characterise the different ages of areas of economic interest.

Wednesday, 1 August 2018

Charging ahead: decarbonisation and the rise in demand for metals to build electric Andrew Bloodworth

Chevrolet Bolt EV (Andrew Bloodworth)
Driven by concerns about climate change, air pollution and energy security the world is undergoing a fundamental transition towards a low carbon future. Decarbonisation of transport is key to this transition and many nations are actively promoting the change from internal-combustion engine (ICE) powertrains to electric vehicles (EV). Many countries, including the UK, have ambitious plans for all new vehicles to be zero emission by 2050 or earlier. In 2018 the UK Industrial Strategy and Automotive Sector Deal outlined the support that the government will make available for development of the EV sector in the UK. However, this strategy so far fails to consider future demand for raw materials and how supplies will be secured.

In order to function EVs require a powertrain (electric motor) and a means of storing energy (a lithium-ion battery (LIB) or hydrogen fuel cell). The raw materials needed for these devices are very different to those used in conventional ICE vehicles. Electric motors utilise high-strength magnets made from rare earth elements (REE) such as neodymium and dysprosium. LIBs require several raw materials including lithium, cobalt, nickel, manganese and graphite. Hydrogen fuel cells require platinum group metals (PGM). The quantities of these materials used are substantial: a typical family-size EV (such as a Chevrolet Bolt)  has a battery which contains about 10 kg lithium, 24 kg nickel and 63 kg graphite and a motor with about 1 kg of neodymium and dysprosium. An EV will contain about 80 per cent more copper than the equivalent ICE vehicle. In addition substantial amounts of copper, cobalt, nickel and other metals will be required for power generation, grid storage and charging infrastructure.

Lithium battery pack from a Nissan Leaf EV (Evi Petavratzi/ Gus Gunn)
Since 2010 global EV sales have grown rapidly, led by China and followed, at some distance, by USA, Europe and Japan. However, the EC predicts that the European battery market could be worth up to EUR 250 billion from 2025 onwards . Future growth is difficult to quantify, but the International Energy Agency forecasts  that the global EV stock might grow from 3 million cars in 2017 to 220 million by 2030. This growth will create substantial additional demand for the raw material needed in powertrains and energy storage systems. Some of these materials (notably cobalt, REE and PGM) are classified as ‘critical’ . Global production of some, such as lithium and cobalt, will have to grow by orders of magnitude in order to satisfy the predicted growth in EV manufacturing.

Sampling from cobalt-bearing crust on the Tropic Seamount,
eastern Atlantic Ocean (Pierre Josso/ Paul Lusty)
All these materials are ultimately derived from the Earth’s crust and without them there would be no manufacturing and no recycling. In order to establish and maintain a UK EV industry that includes the manufacture of batteries and powertrains it is essential to have timely and responsibly-sourced long-term supplies of the essential raw materials. Given the current uncertainties related to global trade and that many countries have similar aims, the UK must ensure material supply security to implement the low carbon transition and to meet climate change and air pollution targets.

BGS is building a strong UK and international reputation in this rapidly-evolving area. Working with academic and industry partners we have won a number of substantial research grants related to critical raw materials from NERC, EU H2020 and InnovateUK. BGS is also active in providing technical advice on this topic to inform policy makers in the UK (BEIS, GO-Science, Cabinet Office, DIT), as well as the European Commission.

BGS science capabilities in this topic area include:
BGS-led field team investigating rare earths associated with alkaline
magmatic rocks, northern Madagascar (Kathryn Goodenough)
  1. Understanding the origin, transport and concentration of critical metals in the continental crust and deep ocean;
  2. Ecology of metals: global production, stocks and flows of minerals and metals (primary Earth resources and secondary recycled resources), the supply chain for metals and circular economy, supply security and minerals intelligence;
  3. Official Development Assistance: mineral resource governance and capacity-building, artisanal and small-scale mining.
For more information contact Andrew Bloodworth

Monday, 30 July 2018

Participating and coaching at a 'pressure cooker' Anna Hicks and Jim Whiteley

Anna Hicks (British Geological Survey) and BUFI Student (University of Bristol) Jim Whiteley reflect on their experiences as a coach and participant of a NERC-supported risk communication ‘pressure cooker’, held in Mexico City in May.

Jim’s experience…. 

When the email came around advertising “the Interdisciplinary Pressure Cooker on Risk Communication that will take place during the Global Facility for Disaster Reduction and Recovery (GFDRR; World Bank) Understanding Risk Forum in May 2018, Mexico City, Mexico” my thoughts went straight to the less studious aspects of the description:

‘Mexico City in May?’ Sounds great!

‘Interdisciplinary risk communication?’ Very à la mode! 

‘The World Bank?’ How prestigious! 

‘Pressure Cooker?’ Curious. Ah well, I thought, I’ll worry about that one later…

As a PhD student using geophysics to monitor landslides at risk of failure, communicating that risk to non-scientists isn’t something I am forced to think about too often. This is paradoxical, as the risk posed by these devastating natural hazards is the raison d'être for my research. As a geologist and geophysicist, I collect numerical data from soil and rocks, and try to work out what this tells us about how, or when, a landslide might move. Making sense of those numbers is difficult enough as it is (three and a half years’ worth of difficult to be precise) but the idea of having to take responsibility for, and explain how my research might actually benefit real people in the real world? Now that’s a daunting prospect to confront.

However, confront that prospect is exactly what I found myself doing at the Interdisciplinary Pressure Cooker on Risk Communication in May this year. The forty-odd group of attendees to the pressure cooker were divided in to teams; our team was made up of people working or studying in a staggeringly wide range of areas: overseas development in Africa, government policy in the US, town and city planning in Mexico and Argentina, disaster risk reduction (DRR) in Colombia, and of course, yours truly, the geophysicist looking at landslides in Yorkshire.

Interdisciplinary? Check.

One hour before the 4am deadline. 
The possible issues to be discussed were as broad as overfishing, seasonal storms, population relocation and flooding. My fears were alleviated slightly, when I found that our team was going to be looking at hazards related to ground subsidence and cracking. Easy! I thought smugly. Rocks and cracks, the geologists’ proverbial bread and butter! We’ll have this wrapped up by lunchtime! But what was the task? Develop a risk communication strategy, and devise an effective approach to implementing this strategy, which should be aimed at a vulnerable target group living in the district of Iztapalapa in Mexico City, a district of 1.8 million people. Right.

Risk communication? Check.

It was around this time I realised that I glossed over the most imperative part of the email that had been sent around so many months before: ‘Pressure Cooker’. It meant exactly what it said on the tin; a high-pressure environment in which something, in this case a ‘risk communication strategy’ needed to be cooked-up quickly. Twenty-four hours quickly in fact. There would be a brief break circa 4am when our reports would be submitted, and then presentations were to be made to the judges at 9am the following morning. I checked the time. Ten past nine in the morning. The clock was ticking.

Pressure cooker? Very much check.

Anna’s experience….

What Jim failed to mention up front is it was a BIG DEAL to win a place in this event. 440 people from all over the world applied for one of 35 places. So, great job Jim! I was also really grateful to be invited to be a coach for one of the groups, having only just ‘graduated’ out of the age bracket to be a participant myself! And like Jim, I too had some early thoughts pre-pressure cooker, but mine were a mixture of excitement and apprehension in equal measures:

‘Mexico City in May?’ Here’s yet another opportunity to show up my lack of Spanish-speaking skills…

‘Interdisciplinary risk communication?’ I know how hard this is to do well…

‘The World Bank?’ This isn’t going to be your normal academic conference! 

‘Pressure Cooker?’ How on earth am I going to stay awake, let alone maintain good ‘coaching skills’?!

As an interdisciplinary researcher working mainly in risk communication and disaster risk reduction, I was extremely conscious of the challenges of generating risk communication products – and doing it in 24 hours? Whoa. There is a significant lack of evidence-based research about ‘what works’ in risk communication for DRR, and I knew from my own research that it was important to include the intended audience in the process of generating risk communication ‘products’. I need not have worried though. We had support from in-country experts that knew every inch of the context, so we felt confident we could make our process and product relevant and salient for the intended audience. This in part was also down to the good relationships we quickly formed in our team, crafted from patience, desire and ability to listen to each other, and for an unwavering enthusiasm for the task!
The morning after the night before. 

So we worked through the day and night on our ‘product’ – a community based risk communication strategy aimed at women in Iztapalapa with the aim of fostering a community of practice through ‘train the trainer’ workshops and the integration of art and science to identify and monitor ground cracking in the area.

The following morning, after only a few hours’ sleep, the team delivered their presentation to fellow pressure-cooker participants, conference attendees, and importantly, representatives of the community groups and emergency management teams in the geographical areas in which our task was focused. The team did so well and presented their work with confidence, clarity and – bags of the one thing that got us through the whole pressure cooker – good humour.

It was such a pleasure to be part of this fantastic event and meet such inspiring people, but the icing on the cake was being awarded ‘Best Interdisciplinary Team’ at the awards ceremony that evening. ‘Ding’! Dinner served.

Friday, 27 July 2018

Learning to Code: the benefits of taking a BGS Rachael Ellen

A photo of me with the instructors at CodeClan on
Graduation Day: smiles all round!
Hi, I’m Rachael Ellen, and I work as a geologist at the British Geological Survey (BGS). I recently took a break from the world of geology to do something completely different and outside my professional comfort zone: learn how to code. This adventure into the world of software development was supported by the BGS Sabbatical Scheme (more info on this for BGS staff at the end of this post), and an experience I found greatly rewarding. BGS are an incredibly supportive organisation to work for, and I am grateful for the opportunity to learn new skills and advance my knowledge. Here, I’ll share my experiences of taking a BGS Sabbatical. 

Motivations for taking a sabbatical

In today’s modern world, we are surrounded by ever-growing technology and applications, making life and accessing information a little easier. It’s therefore no surprise that the digital sector is a growing and increasingly important element in our day to day lives, and one which we rely on to access, share or view information. The BGS recognise this, and it is a part of their strategy to engage more with the public via digital means (for example, their awesome iGeology app). I have always had an interest in new technology and thinking of ways to implement this professionally to communicate the work I do at BGS. However, I lacked the necessary coding skills to be able to create mobile or web applications to achieve this, and so I took a sabbatical to train as a software developer.

The sabbatical itself

Between February and July this year, I was hard at work learning how to code at CodeClan, a digital skills academy in Edinburgh. Initially, I found the course very challenging as it was so fast-paced and intensive: especially for me having little prior experience of coding. I’m a visual learner, and at first found it hard to visualise how different parts of the code were communicating with each other.

From L-R: Planning and coding for Project Week 2: a geology based Android AppGetting my head around the concept of
 multiple classes in Week 3: for me, colourful note taking was essential to reinforce the concepts!
It had been so long since I was in a learning environment that it took a while for me to adjust to deep learning again. I swear I could feel my brain ‘muscle’ screaming at me, asking for rest for most of the course, much like I would expect my leg muscles to feel if I were to take part in a marathon without any prior training. This feeling was particularly strong in the first few weeks, with my mind trying to keep up with coding concepts which were new for me - methods, classes, arrays, hashes, for loops, if statements - but because I was coding every day, evening, and weekend, the fundamentals soon set in and I got the coding bug. It was so satisfying to look back even after a few days of the course and realised how much I’d learned in such a short time.

By the end of the course, I had multiple projects under my belt (for interested coders out there, these were built in either Ruby, Java or JavaScript). Project weeks gave me the opportunity to design and develop my own ideas from scratch, and have the satisfaction of seeing my creations brought to life.


My first project had nothing to do with geology (cats instead, almost as good!), and so I won’t include it in this blog: it was in those first few weeks where I was feeling lost with learning how to code that I had no brain energy to dream up a geology project. However, by the time the next project week came around, programming and I were getting on better and agreeing with each other more, and so I felt more confident to come up with my own projects.

Screenshots of the app I designed for Android, allowing you to find and track geological excursions: with the added bonus of
 viewing a beautiful BGS geological map!
I built my first Android app, ‘GeoTrax’, an app allowing amateur geologists or outdoor enthusiasts to view a list of geological excursions on the island of Mull, and to save completed excursions to a list, allowing them to keep track of their progress. I also incorporated functionality to view a geological map of Mull from BGS archive scans. The app was a firm favourite with my fellow classmates, none of whom have a background in geology, with a lot of them asking me when would this be available to download from the App Store so they could start using it to learn about geology!

Screenshot of the web application I built with JavaScript,
incorporating BGS data
The final project was for JavaScript…which I found a beast to learn, but it is so so so powerful that my initial loathing of it turned to respect and even admiration!  So for my final project, I grabbed the JavaScript bull by the horns and challenged myself to build a web application that shows on a map the locations of East Lothian Geodiversity sites, which I field-audited with BGS a few years ago.  The map is interactive and allows users to click on any site to find out more about that particular site.  This project was also a favourite with my classmates, with comments that my creations made them want to learn more about geology, which was really good feedback to have and great to hear.

Now that I am back from sabbatical, I am looking forward to continuing to develop my skills in software development, and making my work more accessible to the public via digital platforms. I have not only acquired new digital and software skills to allow me to achieve this, but have also heightened my resilience, problem solving, communication and team working skills. I feel more confident with my ability to pursue a complex and new subject, and have learned that as long as you don’t fear failure, have a growth mindset and a passion to learn, anything is possible.

The BGS Staff Sabbatical Scheme

BGS offer their own Sabbatical Scheme (for BGS staff, details can be found via the BGS Intranet here), different to that described in the RCUK Career Breaks and Sabbatical Policy. Examples of strong cases for consideration of sabbaticals include:

  • Developing new skills
  • Experience of new technologies/methodologies
  • An opportunity to work with an expert in their field

There is a short application form to fill in to be considered for the BGS Staff Sabbatical Scheme, which asks the staff member to explain their reason for a sabbatical, the duration planned, a breakdown of any additional funding requested and a business case which should link into the BGS strategy.

Tuesday, 24 July 2018

Using geochemistry to study ancient Camilla Bertini

Me working with the LA-ICP- MS instrument
at BGS Keyworth. 
Hi, my name is Camilla Bertini, and I am a PhD candidate from the University of Nottingham. During my PhD, I have been supervised by Professor Julian Henderson and Professor Christopher Loveluck, and I have just submitted my PhD with a dissertation titled “Trade and glass production in Early Medieval Italy, England, and Denmark (late 6th - 11th century AD): compositional and isotopic analysis”. My main expertise area involves the study of ancient glasses, and more in particular the analysis of their chemical composition. 

Before moving to the UK, my main academic background was focused on the archaeological aspect of glass, hence mainly typology (the study and comparison of artefacts shape and decoration). I then discovered a whole different approach to the subject: I have learned that through chemical analysis it is possible not only to understand what raw materials have been used to make the glass, but also to assess where they were made. The technological aspect of glass-making fascinates me and at that point I decided to move to the UK to get an MSc in Archaeological materials at the University of Nottingham, and then go onto study for a PhD.

My current PhD project involves the study of three different glass datasets dated between the late 6th and the 11th century AD: Comacchio (Northern Italy), Barking Abbey (Southern England), and Ribe (Denmark). I started to collaborate with Dr Simon Chenery (BGS) in July 2016, when I analysed my first batch of samples with LA-ICP-MS: this technique which measures the concentration of trace elements in the glass samples is still scarcely applied to glass studies, even though has showed much potential. In fact, most of the published studies still rely only on significant elements (EMPA) to assess the compositional nature of ancient glasses, although trace elements data can give a better complete knowledge of the nature of the recipe itself.  My first aim was to use LA-ICP-MS not only as a mean to characterise further each chemical composition of glass, but also to understand mixing and recycling practices in glass manufacture by measuring the concentration of specific “recycling markers” (Sb, Sn, Co, Cu): understanding when glass has undergone through repetitive recycling cycles and when its original composition has been mixed with other recipes is crucial to understand the degree of manufacture processes occurring in any workshop.

Glass fragments from Comacchio and Barking Abbey. From sx to dx: glass vessel with yellow band decoration; mosaic
 tesserae; fragment of a glass lamp; soapstone crucible with a layer of green and red opaque glass. 
With the help of a NERC Isotope Geosciences Facility grant, I was able to analyse three different isotopes (strontium, neodymium, and lead) for 67 samples from two Early Medieval sites: Comacchio (Northern Italy), and Barking Abbey (South-Eastern England) in collaboration with Professor Jane Evans (BGS). One significant gap in glass studies research up until now is that few isotopic data have been published on Roman glass and no isotopic data has been acquired for glass artefacts after the 7th century for Western glass.

Looking at Barking Abbey glass through the microscope.
We know from previous analytical studies that the main area of production of glass during the Roman and Early Medieval period were Palestine and Egypt. The same isotope analysis confirmed that raw materials for glass from the Levantine area have been used to make Roman and Early Medieval glass, therefore, my main hypothesis was to understand if samples from Comacchio and Barking Abbey have been indeed produced with raw materials harvested in the Levant. For example, was plant ash glass found in Comacchio (Northern Italy) made in Islamic primary production centres? Could we potentially finally confirm the trade of glass between the Islamic glass-making and the Venetian area? My second objective was to examine mixing and recycling practises by looking at Sr and Nd isotope data. I submitted my PhD in April: while I cannot reveal the results of my research just yet, all I can say that the data acquired is very promising and I cannot wait to finally publish my findings!

(NB Camilla successfully defended her PhD on 13th July)

For more information then you can contact Camilla here or follow here on Twitter

Friday, 20 July 2018

Private Water Supplies in Wales: information to support public heath Louise Ander and Gareth Farr

There are about 15,000 recorded private water supplies in Wales, supplying approximately 77,000 people (DWI, 2017).  Whilst many people, especially in rural areas, use private water supplies and not ‘mains’ water, they can pose risks to health and well-being if they are not properly managed and monitored. These risks can be from poor chemical or microbiological quality, as well as vulnerability to insufficiency of supply.

Water quality can be directly affected by factors which include: the local environment, the chemistry of the local rocks; any corrosion of lead-containing pipes or solder; how the water source is protected from surface sources of contamination; and, maintenance of treatment systems used in properties. The year round availability of water to users can be influenced by one or more of the following factors: water consumption; weather patterns, such as drought; local geology; and, implementation of properly designed infrastructure including localised water storage.  

In Wales about 90 % of the public water supply is from surface water (e.g. reservoirs) and as a result there is a paucity of groundwater information in Wales. This lack of groundwater information becomes apparent when we consider that the majority of private water supplies, unlike public supplies, abstract from groundwater (springs, wells and boreholes) and explains why geology is so important to both quality and quantity of these supplies.

An example of integrating existing stream sediment Pb data (left) with private water supply testing failures (right). Private Water supply data (Drinking Water Inspectorate), Stream sediment data reproduced with the permission of the British Geological Survey ©NERC. Ordnance Survey Maps © Crown Copyright and database rights 2018

A recent NERC innovation project (NE/N01751X/1), focused on knowledge exchange and data-sharing to better understand risks to private water supplies.  NERC innovation aims to foster partnerships between scientists and government bodies to address challenges and opportunities that can both benefit societal wellbeing and the environment.

During this two-year project, Louise and Gareth visited representatives of each of the 22 Local Authorities across Wales and spoke to the environmental health officers responsible for private water supplies, as part of the knowledge exchange activities.  Meetings with local authorities, as well as key national organisations such as Public Health Wales, involved the discussion of common issues and concerns and where useful existing BGS/NERC data was highlighted. This knowledge exchange was successful, ‘opening up’ these data for Local Authority officers, being integrated into the Water Health Partnership for Wales website and highlighted in the Environmental Public Health Service in Wales Annual Review.

Louise and Gareth will continue to work on private water supplies in Wales, by representing BGS on the ‘Water Health Partnership for Wales’ and liaising with Welsh Government, Public Health Wales Natural Resources Wales and Local Authority officers across Wales. We would like to say a huge thank you to all of these partners.  A future blog will update on the aspects of the project which have focused on gaining new knowledge through data sharing !

Each of the 22 local authorities in Wales visited during the project. Ordnance Survey Maps © Crown Copyright and database rights 2018. All photographs by Gareth Farr & Louise Ander (BGS). 

Tuesday, 17 July 2018

The Papua New Guinea Tsunami, 20 years on ... by Prof Dave Tappin

20 years ago today, on the evening of the 17th July 1998, 2200 people died when a 15-metre high tsunami devastated an idyllic lagoon on the north coast of Papua New Guinea (PNG).  The event was to prove a benchmark in tsunami science as the tsunami was generated, not by an earthquake, but by a submarine landslide. Most tsunamis are generated by earthquakes and, previously, submarine landslides were an under-appreciated mechanism in tsunami generation. This was because there had been no recent historical event to prove just how dangerous they could be.

The Sissano Lagoon devastated after the 1998 tsunami  (Image courtesy of Jose Borrero, University of Southern California)
The Sissano Lagoon devastated after the 1998 tsunami
(Image courtesy of Jose Borrero, University of Southern California)
Sissano Mission school carried 65 metres inland by the tsunami wave
(credit; NOAA/NGDC, Hugh Davies, University of PNG)

At a water depth of 1600 metres, on the landslide headscarp
we found slumped limestone blocks, together with cold water
chemosynthetic mussels and tubeworms feeding on the methane
rich fluids expelled when the seabed failed. 
Credit: Japan Agency for Marine Earth Science
Back in 1998, there had been few recent destructive earthquakes, they were to strike later.  Although earthquake mechanisms were generally well understood in tsunami generation, the mechanisms by which submarine landslides cause tsunamis, were not. In fact it was generally believed that submarine landslides could not generate destructive tsunamis.

PNG, changed all this.

The importance of Papua New Guinea

PNG was a ‘wake-up call’ for tsunami hazard. The tsunami was the most devastating event since Sanriku 1933, when a tsunami struck the east coast of Japan, leaving 1500 dead and the same number missing.

The massive death toll, generated a surge of scientific interest in non-earthquake tsunami mechanisms, which subsequently extended outside of convergent margins, where earthquakes are most common, to passive margins, and to volcanic collapse.

The tsunami struck at a time when new technology was being used increasingly to map the sea bed as well as topography was being mapped on land.  New numerical models of submarine landslide tsunamis were also being developed, but were still theoretical, and PNG allowed these to be tested in real life conditions.

At the time of PNG, tsunami science was dominated by seismologists because earthquakes were seen as the only major hazard. Research into submarine landslide tsunamis requires the contribution from geologists, so geologists became much more involved. The research on the PNG tsunami was therefore to prove seminal.

Papua New Guinea – the forerunner

As was later to prove, PNG was the first of a series of catastrophic tsunamis which over the next 13 years were to devastate the coastlines of the Indian Ocean (2004) and Japan (2011). These tsunamis killed over 250 000 people and caused billions of pounds worth of damage. These events would ‘rock’ the globe, bringing home to world populations the previously unrecognised hazard from these events.

Aerial view of Banda Aceh, northern Sumatra, where over 100,000 people died in the 2004 Indian Ocean tsunami
(Image U.S. Navy photo by Photographer's Mate 2nd Class Philip A. McDaniel)

In the case of the Indian Ocean, there was a realisation that geological hazards, such as volcanic eruptions, earthquakes and tsunamis do not just impact on ‘other people’ in far distance places. With ever increasing international travel made so much easier by a general drop in prices, an idyllic holiday in an exotic location could quite rapidly turn into a nightmare.

Earthquake tsunamis are not the only hazard

Sanriku, 1933 was an earthquake-generated tsunami resulting from a Mw 8.4 event. The scale of the tsunami from Sanriku earthquake, although devastating, was commensurate with the earthquake magnitude. Both Japan and PNG are sited along plate boundaries, termed convergent margins, where earthquakes are quite common. More recent events along these types of margins were in 2011 off the east coast of Japan and in 2004 in the Indian Ocean. The tsunamis from these events were also devastating, but in scale with their associated earthquakes.

The elevation of the tsunami which struck PNG, however, was completely out of proportion to the associated earthquake Mw of 7.1. Most earthquakes are caused by movement, or ‘slip’, along the interface between the plates which are colliding along convergent margins. Although there are ‘special’ types of earthquakes, termed ‘tsunami earthquakes’, which may generate tsunamis larger than their magnitude would suggest. Tsunami earthquakes are usually associated with heavily sedimented convergent margins, and the Papua New Guinea margin is not of this type.

There were several other aspects of the PNG tsunami which suggested that the earthquake was not the cause. There was a 20 minute delay between the earthquake and the tsunami striking the coast. The earthquake was located quite close to shore, so this was immediately anomalous. Field surveys conducted immediately after the event also found that the distribution of the tsunami elevations along the coast had the highest wave heights focused on the low-lying Sissano Lagoon.

Scientists confused and the generosity of others 

After the PNG event and as the results of the first field surveys were circulated, there was much discussion in science circles on why the tsunami was so elevated in relation to the earthquake magnitude. For example, at the AGU international scientific meeting in San Francisco in December of 1998 there was a special session during which the PNG tsunami was discussed.

Without further research the event would have remained an enigma. Except that, in response to a plea for help from Alf Simpson, the Director of the regional geoscientific organisation, SOPAC, which assisted PNG in mitigating their geological hazards, the Government of Japan funded four marine scientific research expeditions on state of the art vessels, to survey the area offshore of the devastated area. The USA diverted one of its vessels working in the region to acquire further marine data. This was the first time that marine surveys had been carried out in response to a major tsunami disaster, and the first time this region had been surveyed using these sophisticated technologies.

The JAMSTEC Kairei which in January 1999 was the first research vessel to research the PNG 1998 tsunami
(Credit Dave Tappin)

Marine surveys provide the answers

The first surveys took place in January 1999 and, from mapping the sea bed, discovered a submarine landslide just offshore of the area devastated by the tsunami.  Based on the mapping, the landslide discovered was used as the basis for numerical models of the tsunami. This was a major challenge as this had only been attempted once previously. The numerical models demonstrated that the landslide was the most likely cause of the tsunami.

The 1998 Papua New Guinea tsunami was triggered 12 minutes after the earthquake by a rotational slump,
~6km3 in volume, located 20 km offshore of the devastated area. Note the circular expansion
of the tsunami waves, characteristic of a point-source, submarine landslide tsunami. Credit: Phil Watts

Because landslides were considered not to cause hazardous tsunamis, this result on the tsunami mechanism was controversial, but gradually as other events were identified and more new numerical models were developed, they became more generally accepted.

The area offshore of northern Papua New Guinea mapped in 1999 by the Kairei (Credit. Tappin et al 2001).

The simulation is based on a dual, earthquake/submarine landslide mechanism,
with the landslide triggered three minutes after the earthquake.
Note the linear tsunami wave front from the earthquake in the south, and
the circular waves from the submarine landslide in the north. Credit: Stephan Grilli

Unforeseen downstream impacts

The generous investment made by Japan in funding the marine research on PNG was to be repaid in full in 2011, when the east coast of Honshu Island was devastated by a tsunami up to 40 metres in elevation which killed 18 000 people and cost 200 billion dollars in damage. Although the earthquake magnitude 9.0-9.1 could explain most of the tsunami, the elevated 40-metre-high run-ups along the northern Honshu could not. So, a submarine landslide was proposed and numerically modelled as the cause of these. Without the research carried out on the PNG tsunami, this would have been impossible.

Overview shot of Minamisanriku, northern Honshu, showing the destruction from the 2011 Japan tsunami (Credit Dave Tappin).
Overview shot of Minamisanriku, northern Honshu, showing the destruction from the 2011 Japan tsunami
(Credit Dave Tappin).

The destruction of Minamisanriku from the Japan 2011 tsunami (Credit Dave Tappin).

The future

Dave Tappin emerging after the first Shinkai
2000 submersible dive onto the tsunami 
landslide – November 1999 (Credit Horst Letz).
Since PNG, we have come a long way in understanding how submarine landslides generate tsunamis, but they are a major hazard which is still not fully understood or appreciated. Although mapping of the sea bed now demonstrates the almost universal presence of submarine landslides offshore of most coastal areas, there are still too few well studied events to form a sound basis for similar mitigation to that from earthquakes, which are addressed by warning systems in all the world’s ocean basins. In addition, the numerous different submarine landslide mechanisms means that ‘one size doesn’t fit all’ so the development of generalised models is still in its infancy.

As with all high impact – low frequency hazards, our experience from the recent tsunami events identified here is that memories fade fast after the immediate response. As memories fade, so does the investment needed to understand and mitigate the impacts of tsunamis in the future. Research into the submarine landslide hazard is ongoing, but is harder to fund as other research priorities take over. The next major challenge is to tackle dual earthquake/submarine landslide mechanisms, such as Japan, 2011, and to extend the ocean basin early warning systems, now operational for earthquakes, to include tsunamis from submarine landslides – because undoubtedly, at some time in the future there will be another event.

Note. Professor Dave Tappin of BGS participated in the research on the PNG tsunami, taking part in all of the four marine surveys funded by Japan. At first, only a one-off opportunity, it led to a career in tsunami science as later events in the Indian Ocean and Japan proved the massive hazard from tsunami events globally.  Dave acknowledges all of his numerous colleagues and friends with whom he has collaborated on this research.

Further reading

The Sissano Papua New Guinea tsunami of July 1998 - offshore evidence on the source mechanism 

The Papua New Guinea tsunami of 17 July 1998: anatomy of a catastrophic event

Submarine Mass Failures as tsunami sources - their climate control

Did a submarine landslide contribute to the 2011 Tohoku tsunami?

Tsunamis from submarine landslides

The Generation of Tsunamis

The importance of geologists and geology in tsunami science and tsunami hazard