Ostracods, small animals which live in all aquatic environments, build shells (see image) that reflect the temperature and salinity of the water in which they formed. When the shells fossilise they can be used to understand past conditions of the lake or climate at that time. The ratio of certain trace elements (magnesium and strontium) to calcium (Sr/Ca and Mg/Ca) and the oxygen and carbon isotopes (δ18O and δ13C) within the shell is used to relate to the water conditions. The magnesium, strontium and oxygen isotopes relate to the past temperature and salinity of the water; carbon isotopes relate to the productivity of the lake. Here PhD student Lucy Roberts from UCL tells about her research on improving cleaning methodologies…
To obtain the most accurate reconstructions of past conditions, the ostracod shells must be cleaned of mud and/or remaining parts of their internal limbs. There are, however, a range of methods used across different laboratories. All the methods used have been proven to effectively clean the shells, but until now it has not been clear if the methods are also removing parts of the shell surface and causing an alteration to the trace element and/or isotope signal that is preserved in the shell.
To obtain the most accurate reconstructions of past conditions, the ostracod shells must be cleaned of mud and/or remaining parts of their internal limbs. There are, however, a range of methods used across different laboratories. All the methods used have been proven to effectively clean the shells, but until now it has not been clear if the methods are also removing parts of the shell surface and causing an alteration to the trace element and/or isotope signal that is preserved in the shell.
We found that some cleaning methods have the potential to cause alteration to the signal and can therefore affect the values obtained for climate reconstructions. For trace element reconstructions we calculated that reductive cleaning can alter the Mg/Ca temperature reconstruction up to −12°C and the Sr/Ca conductivity reconstruction up to +4.5 mS cm−1 by removing parts of the surface of the shell. Isotope-based reconstructions are less affected by the cleaning method. However, the concentration and length of exposure to chemicals was an important factor in the extent of alteration.
To establish a universal method which allows comparison between reconstructions, we recommend sonication for trace element analysis and oxidation by hydrogen peroxide for stable isotope analysis. We believe these methods are effective at cleaning the shells, but do not significantly alter the signal preserved in the shell.
For more information on the study and the recommended methods, the open access paper is reference is: Roberts, L.R., Holmes, J.A., Leng, M.J., Sloane, H.J., Horne, D.J. Effects of cleaning methods upon preservation of stable isotopes and trace elements in ostracod shells: Implications for palaeoenvironmental reconstruction. Quaternary Science Reviews, 189, 197-209. The paper can be download for free here.
Comments