Wednesday, 21 December 2016

UPGro: Hidden Crisis - the story so Helen Bonsor

Unlocking the Potential of Groundwater for the Poor (UPGro) is an international research programme that focuses on improving the evidence base around groundwater availability and management in sub-Saharan Africa (SSA). The Hidden Crisis project is a consortium project within the UPGro programme and aims to develop a robust evidence base of the large-scale status of rural groundwater supply functionality across three countries, Ethiopia, Malawi and Uganda, which have struggled for decades with service sustainability.

Helen Bonsor tells us more about the project and provides an update on progress so far after the latest project meeting in Edinburgh.

Overview and aims of the workshop

Since our last project workshop, held in Addis Ababa Ethiopia in September 2015, the first main survey phase of the project (to survey the functionality and performance of a sub-sample of water points and committees) has been completed within each of the three countries, alongside a rapid political economy analysis studies for Ethiopia and Malawi (Uganda to happen within the next few months).

The aim of the workshop was to bring the project team together to foster our growing working relationships, and to:
  1. Review Survey 1 - key challenges and successes – and to review the initial analysis of the data and plan for more detailed final analysis
  2. Planning of Survey 2 - location and site selection criteria, the research approach and aims, methods and logistics
  3. Planning of the Longitudinal studies in the 3 countries for both physical and social science surveys
  4. Interdisciplinary research - to review and discuss our approaches to interdisciplinary science in the Hidden Crisis project and lessons learned from other UPGro Projects
  5. Discuss ongoing stakeholder engagement and a Publication Strategy - for both the country research teams, and for the project as a whole.

Attendees and meeting programme

The workshop was held at the British Geological Survey (BGS) office in Edinburgh, UK, over four days - from 21st to 24th November 2016. Representatives from all institutions and from each country involved in the research consortium attended the workshop - 23 people in total.

Day 1 was focused to reviewing the work of Survey 1 across the three countries and the initial data analysis; on Day 2 the key logistics and research aims of Survey 2 happening  in 2017 were discussed, as well as the political economy work completed so far; Day 3 explored interdisciplinary research in the project, and the key aims and logistics for the longitudinal studies; and, Day 4, was used to identify and review the key priorities and planning actions for the next few months across the project team for the next main research survey phases. Several short “Ted talks” were also given throughout the week.

Hard at work at the 2nd Hidden Crisis project meeting

Summary of discussions

Presentations were made by Dessie Nedaw (Ethiopia), Michael Owor (Uganda) and Evance Mwathunga (Malawi) of the successes and challenges in completing Survey 1 across the three countries.    The project database and QA process which has been developed to store all the data collected by the project (both physical science and social science) from Survey 1, and subsequent surveys.

A preliminary analysis of Survey 1 data from Ethiopia was presented by Dessie Nedaw and Seifu Kebebe.  The analysis used the project approach of examining the impact of using different definitions of water point functionality.  These include: working at the time of visit, having an acceptable yield, passing national inorganic chemistry standards, and whether they contained total thermal tolerant coliforms.

The initial results of the rapid political economy analysis (PEA) work from Malawi and Ethiopia were presented by Naomi Oates and Florence Pichon of ODI, respectively.

Project discussions and group working at the project meeting.
There were detailed discipline group discussions and wider project team discussions to identify the main methods, key criteria for site selection and the main challenges and logistics for planning Survey 2.  Discussion was given to logistical and ethical challenges of repair of water points visited, risk of damage of the water points, and management of community expectations and follow-up during the mobilisation phases.  Key timescales for planning were identified by the project team.

A half day of the workshop was focused on a wider project team discussion of our approach to interdisciplinary science – and the key challenges and opportunities of doing this in the next phases of the project.  Kirsty Upton (of the UPGro programme co-ordination group) gave a presentation of an external MSc research paper, which has reviewed the different approaches to interdisciplinary science across the 5 UPGro consortium projects.  Lissie Liddle (PhD student Cambridge University) presented the systems dynamics analysis she will be conducting for the Hidden Crisis project, bringing together physical and social science data, as part of her PhD within a Bayesian network analysis; and, Richard Carter then led a facilitated project discussion on our different perceptions of physical and social science factors to HPB failure.  

For more information please visit the UPGro: Hidden Crisis website or follow us @UPGroResearch

Tuesday, 20 December 2016

Poster presentation at the Royal Society of Saeed Ahmad

Hi, my name is Saeed, I am a PhD student at the University of Nottingham in the School of Biosciences, and on the 14th of November I attended an Early Career Researchers Meeting on the Environmental Chemistry of Water, Sediment and Soil at the Royal Society of Chemistry.

PhD Research 

I am investigating the availability of iodine and selenium in soil and their uptake by crop plants in the Gilgit-Baltistan (GB). Gilgit-Baltistan is an extremely remote area in North East Pakistan and situated at the border region of Pakistan, China and India. The landscape of the area is very mountainous and more than half of the area is located 4500 meters above sea level. The local population is largely dependent on locally produced agriculture produce. The Gilgit-Baltistan area has a high rate of endemic goitre and a low concentration of urinary iodine in the local population. The overall aims of my study are to assess the factors controlling the iodine and selenium status in soils, water and plants in Gilgit-Baltistan, and ultimately examine the effects on the local population. I have recently collected soil, plants and water samples from GB which I am currently analysing by using different analytical techniques. After completing a preliminary investigation and obtaining some data on iodine and selenium contents of soil and wheat crop I presented a poster on Geochemistry of iodine and selenium in Gilgit-Baltistan at the Royal Society of Chemistry in London.

Students from the Geochemistry Group attending the conference.

Excitement and concern 

Leading up to the conference I was both excited and concerned. I was excited that I would have the opportunity to present my work and talk with other early career researchers. My concern was about missing the train and not getting to conference on time as I had to catch an early train from Nottingham. Luckily I managed to catch 6.30 am train and got to the conference venue on time along with my other colleagues from the Geochemistry Group from the University of Nottingham.

Chris Collins presenting me with my 1st prize certificate.

Poster Presentation

When we arrived at the Royal society of Chemistry, we were welcomed at the registration desk by very friendly staff from the organising committee and were guided to the poster stands. After putting my poster up, I walked around the lobby and glanced at the other posters. Everybody’s poster was very impressive, eye catching, and presenting new ideas and findings on a variety of topics in environmental chemistry. All those who gave oral presentation also did really well. Two of my colleagues Baset and Heather gave amazing presentations on iodine and selenium.

A Great Result 

The key note speaker Professor Chris Collins also gave an impressive presentation. It was a great day and I had the opportunity to speak to researchers from other universities across the UK, it was amazing to see what other people are researching. The posters were judged by the judges during poster sessions and lunch break. At the end of the day a prize giving ceremony took place, and the conference organisers announced that I had won 1st prize in the poster competition! When they called my name I couldn’t believe it! I felt extremely happy and honoured to go to the front and receive the certificate and a prize from Professor Chris Collins. It was a day that I’ll never forget. It all happened due to the invaluable support and guidance I get from my supervisors who are always available whenever I need them and for encouraging me and the whole group to attend such events. My day began with the stress and worry of missing the train and ended with the joys and happiness of winning the 1st prize.

My PhD is supervised by Dr Scott Young and Dr Liz Bailey from the University of Nottingham and Dr Michael Watts from BGS, within the joint Centre for Environmental Geochemistry.

Wednesday, 14 December 2016

Coming together for Drifting Apart: sharing the geological heritage of the North Kirstin Lemon

Partners and sub-partners at Glen Roy in Lochaber Aspiring
UNESCO Global Geopark during the 4th Project Meeting.
As geologists, we get many opportunities to be involved in projects that often involve working with a number of partners from across the world. As part of an EU-funded project, I attended the 4th project meeting of 'Drifting Apart' in Fort William in Scotland as one of several sub-partners that are involved in this fascinating area of geological heritage.

Led by the Causeway Coast and Glens Heritage Trust, the project, funded through the European Regional Development Fund’s Northern Periphery and Artic Programme is running from 2015 to 2018 with the ultimate aim of promoting innovative products and services for social and economic prosperity, and hopes to build a strong network of geoheritage destinations.  A total of seven partners (and numerous sub-partners) from across the periphery of the North Atlantic region are involved and hope to unearth and strengthen the understanding of our interconnected geological heritage in an EU-funded project appropriately named ‘Drifting Apart’.

The project includes partners and sub-partners from Northern Ireland and the Republic of Ireland, as well as from Scotland, Norway, Iceland, Russia, and Canada and includes a mix of UNESCO Global Geoparks and Aspiring UNESCO Global Geoparks at different stages of development. Through the project, it is intended to help strengthen the links between these areas through cooperation and virtually reconstruct the shared geological heritage that these areas enjoy. 

Due to our high level of experience in ‘popular’ geological interpretation and in developing geological-based tourism products, the Geological Survey of Northern Ireland is working together with the Causeway Coast and Glens Heritage Trust and Fermanagh and Omagh District Council (Marble Arch Caves UNESCO Global Geopark) to develop key elements of the project. To date these have included compiling the Drifting Apart storyline, helping to develop educational resources and deliver training for tourism and community groups all of which will help the project to achieve its main aims and objectives.  There are a number of key areas that the project will focus on:

1. Drifting Apart storyline and learning opportunities
Visiting one of many interpretative sites in Kenozero National Park, Russia
during the 3rd Project Meeting.
By highlighting the geological ‘story’ of the entire project area it will increase the awareness and understanding of not only each regions unique geological heritage, but also help to explain how these areas were once physically connected. Despite the geographical differences that exist, this will explain the dynamic nature of our planet and allow for a greater appreciation of the project areas shared geological story. The storyline will be used to develop a transnational geoheritage trail, including interpretation in all of the partner areas linked in to the Drifting Apart story. 

2. Virtual learning
Whilst the aim of the project is to encourage visitors to each of the partner area, in reality this will only be possible by a limited number of people. To address this, a virtual learning element has been included within the project so that the geological heritage of the entire area can be shared and enjoyed from anywhere in the world.

3. Geopark model and knowledge transfer
The partners included are made up UNESCO Global Geoparks of varying levels of experience as well as Aspiring UNESCO Global Geoparks at different stages in geopark development. Through the project, each partner will be able to learn and share experiences and develop potential models for future geopark growth. 

Partners and sub-partners in Reykjanes UNESCO Global Geopark, Iceland
 during the 2nd Project Meeting.
4. Geo-tourism and geo-education 
All UNESCO Global Geoparks work on a ‘bottom-up’ approach so one of the most important aspects of the project will be to increase the awareness and understanding of both the individual partner areas in addition to their place in the entire Drifting Apart story. This will be done through the development of common education products with specific local elements as well as similar training for communities and tourism providers. 

The next project meeting will be held in Stonehammer UNESCO Global Geopark, Canada in May.

For more information on the project and to keep up to date with the most recent developments then see or @DriftingApartEU 

Friday, 9 December 2016

BGS Stakeholder Event Prof John Ludden CBE

Every year we hold a forum to provide our stakeholders with a summary of recent science results, its impact, and our future direction. Here, our Executive Director, Prof John Ludden CBE, provides us with an update from the most recent stakeholder forum.

John Ludden presenting at the BGS Stakeholder Forum.
BGS held its biennial stakeholder event in the Geological Society of London in November. This event involved a number of different types of stakeholder which covered academia, governmental and the private sector.
Mike Stephenson (Director of Science and Technology) presented a snapshot of BGS science to 2021, where he underlined the vision of BGS to place infrastructure and real time monitoring at the heart of BGS science, in particular to underpin future energy development of the UK , but also in urban development and in sea-floor technology for mapping and resource development
Michelle Bentham (Head of Partnerships and Innovation) summarised our refreshed focus on the innovation pipeline form new ways of measuring the earth and applications to critical infrastructures to provide strategic data and ultimately spin out commercial activities and licences.
Questions from the audience had a strong focus on the UK regional agenda and underlined that although BGS is expanding its role overseas, and despite diminishing base line funding for the UK, there are important regional problems. Not the least of these are coastal erosion, development of new energy supplies and large infrastructure, such as HS2.
In conclusion of this event showed:
  • A shift in BGS towards real time subsurface monitoring underpinned by state of the art underground facilities and sensor development.
  • A stronger focus on innovation and partnerships
  • An opportunity for BGS to expand globally both in ODA implementation and in developed countries
  • The need to defining a new place for BGS in UKRI & UK government that ensures flexibility and allows BGS to prosper.
  • And finally, that BGS is at an exciting cross roads in its near 180 year development and we have a stakeholder group who believe in us.
Both the presentation delivered and the meeting itself can be viewed here.

John Ludden

Tuesday, 6 December 2016

JC142 Marine E-tech cruise to Tropic Seamount, north-east tropical Paul Lusty

Some of the new data acquired for Tropic Seamount, including
 ship-board multibeam swath bathymetry and geoacoustic 
sub-bottom profiler,  AUV surveying, ROV sampling and 
CTD water information
We are now in the final few days of our exploratory cruise to Tropic Seamount (23.5° N, 20.4° W), about 650 km south of the Canary Islands. We are amassing a significant dataset, having mapped the majority of the area of interest with ship-board multibeam swath bathymetry and geoacoustic sub-bottom profiler. This data is valuable for identifying hard rock areas for more detailed surveying with the autonomous underwater vehicle (AUV) Autosub 6000, and rock sampling using the remotely operated vehicle (ROV) Isis.

We have taken about 35 CTDs to measure conductivity, temperature and depth (pressure), and collect water samples at a range of depths over and around the seamount. We have completed 14 AUV missions to acquire higher resolution swath bathymetry, sidescan, sub-bottom profiles and still images of the seafloor in specific areas of interest. This data has been ground truthed with numerous ROV dive (18 to date), which have used for geological mapping, rock sampling (we have collected more than 250 rock samples, many insitu), core drilling (a total of 46 cores have been acquired) and biological surveying and sampling. This is probably now one of the most thoroughly surveyed seamounts globally, and the new datasets will form a basis for geological and oceanographic research for years to come.

The new rock cores have been acquired using a core drill designed at the National Oceanography Centre specifically for this project and mounted on the front of the ROV. The cores are potentially the most valuable samples for studying the lateral variations in ferromanganese crust composition, texture and thickness as a result of local-scale processes, such as such as micro-topography, currents and sedimentation rates. These cores form the basis for the research BGS is leading on, which will be delivered by a two year post-doc position, held by the newly appointed Pierre Josso. Pierre undertook his PhD with the University of Southampton on the potential for recovery of rare earth elements from metalliferous sediments on Cyprus. He will be joining BGS/NIGL in February to work on these cores and other samples, with the objective of establishing a litho-chemo-stratigraphy across the seamount.

Science operations were suspended at very short notice last week when the RRS James Cook received a ‘mayday’ call from a yacht in the Atlantic Rally for Cruisers transatlantic race, which had departed from Grand Canaria. Just after 14:00 on Wednesday the yacht crew sent a message indicating that their boat was taking in water, their pumps were overwhelmed and they were sinking. As the closest available ship, about one and a half hours away, we were obliged to pull off station and head to the yacht at full speed. With the RRS James Cook using all four engines we accomplished an unheard of speed of 17 knots, reaching the yacht and its crew in about 1 hour. By the time we reached the 36ft yacht ‘Noah’ the crew (three adults and two children) had abandoned the sinking vessel and boarded their small yellow inflatable life raft, which was still close to the yacht. The James Cook pulled up close to the life raft which gradually floated alongside. The crew of the James Cook were fully prepared and well trained, handling the situation very professionally. Lines were thrown to the life raft to provide a link to the deck of the James Cook, some 3-4 metres above sea level and the raft. A ladder was lowered, but it took several attempts, despite the very calm sea conditions, to bring the life raft into a suitable position for the people on board to grab the ladder and clamber onto the James Cook.

The scene when the RRS James Cook arrived at the abandonded yacht ‘Noah’, with the small life raft containing five people
 floating away from the vessel.The life raft alongside the RRS James Cook as the ship’s crew help the people off the life raft
 and up the ladder hanging down the side of the ship.
Despite the good daylight conditions it was a precarious operation to move the five people from the constantly moving life raft onto the deck of the Cook. In about 30 minutes all five of the yacht crew were safely rescued onto the James Cook, where they were warmly welcomed by crew and scientists. We then had to retrieve the AUV, which was still in the water when we received the SOS call. The ship now exceeded its capacity so we steamed back to Tenerife, our departure port, dropping the yacht crew off early on Friday morning. We were literally alongside for about 1 hour (probably the shortest port call in the history of the RRS James Cook) before being led back out by the harbour pilot to travel back to Tropic Seamount. The Captain of the RRS James Cook placed a special request to NERC to use three engines to get us back to Tropic Seamount as soon as possible. This uses considerably more fuel, but as a result the rescue and return journey to Tenerife only cost us about 60 hours.

Rock sampling using the manipulator arm on ROV Isis. Once a rock is collected
it is placed in a compartmentalised and numbered sample box on a retractable tray
which slides out from beneath the ROV. The images also shows push cores with
 t-handles for sediment sampling using the manipulator arm. The grey niskin used
for collecting uncontaminated rocks samples for microbial studies is situated
on the bottom lefthand side of the image

Anyway we were back on the science programme by Saturday 26th November. Improved physical and chemical characterisation of ferromanganese crusts is crucial to understanding local-scale processes controlling deposit formation and predicting their occurrence. One of the first missions once back at Tropic Seamount was a 17 hour ROV drilling dive, with the aim of acquiring 12 drill cores (the maximum number the ROV can collect in a single deployment) over a lateral distance of some 100 m of ferromanganese crust pavement. These cores will principally be used by BGS to investigate lateral variations in crust thickness and composition, using a combination of high resolution trace element geochemistry and isotope analysis. The ROV drill requires a flat surface for the ROV to land on, so its use is restricted to the large areas of rock pavement, mainly occurring on the summit of the seamount. However, as water depth is likely to have a strong influence on crust composition and thickness it is important to sample over the full depth range of the seamount, from the summit plateau at about 950 m down to where the flanks meet the abyssal plain in water depths >4000 m. This type of sampling relies on picking up loose rock with one of the manipulator arms on the ROV Isis or preferably snapping off insitu samples from the seabed exposures.  The manipulator arms are very powerful and capable of lifting about 200 kg, but it still challenging to break pieces off the highly encrusted rock slabs whilst attempting to keep the ROV static. The crust samples we are obtaining typically have very nice sub millimetre-scale layering, representing millions of years of gradual deposition and reflecting paleooceanographic changes (e.g. water mass provenance, depth of the oxygen minimum zone, biological productivity, current velocity and upwelling patterns) in the north-east Atlantic. To compliment the scanning electron microscope, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and isotope studies planned at BGS, high-resolution x-ray computer tomography scanning will be done at the University of Leicester. This quick and entirely non-destructive technique allows the reconstruction and visualisation of the internal structure and textures of materials in three dimensions. It is ideally suited to imaging materials such as crusts, which have well-defined, compositionally distinct layers. Combined with compositional data provided by LA-ICP-MS, this technique provides a powerful tool to explore the heterogeneity (or lack of continuity) of litho-chemo-stratigraphy within crusts and nodules at the centimetre scale.

The potential role of microbes in Fe-Mn deposit formation remains unclear. To study this process colleagues at NOC are collecting small pieces of ferromanganese crust to study. In an attempt to transport these from the seabed sampling site to the surface in their ambient environment we have adapted a niskin bottle mounted on the front of the ROV. Once a piece of rock has been placed in the niskin it is closed to seal it from the wall column as the ROV is recovered back to deck. The uncontaminated material will be used to study any microorganisms colonising the crust and which may have role in concentrating E-tech elements in these deposits.

From L-R: Ferromanganese crust samples collected with the ROV Isis manipulator arm spread out in the laboratory on the
 RRS James Cook, ready for cutting and subsampling; A cut section from a nodular block of ferromanganese crust. Note the
 intricate growth layers, which have been deposited on lithic fragments incorporated into the nodule during development
The ROV dives also provide an excellent opportunity to study the marine ecosystem and fauna populating the seamount. Seamounts are generally considered to support high levels of biodiversity and unique biological communities. There is therefore potential for conflict between the location of sessile biology and the highest grade ferromanganese deposits. We are collecting lots of imagery to assess the type and diversity of fauna inhabiting the different seamount environments over varying depth ranges. Images and other habitat data are supported by the collection and photographing of type specimens by the ROV during the geological sampling operations.

Clockwise from top left: A ‘Dumbo Octopus’ (Grimpteuthis spp.) photographed during a ROV dive. These deep-sea ‘umbrella
 octopuses’ are rare and notable for their fins that resemble elephant ears; A large crab (the red laser dots are 10 cm apart)
 walking over ferromanganese nodules sitting in soft sediment on Tropic Seamount; Typical sessile fauna on an area of
 ferromanganese crust pavement on Tropic Seamount; Crinoids growing on a sandy sediment covered bank and facing the
 current direction (the red laser dots are 10 cm apart). 
The remaining few days of the cruise will be spent conducting another ROV-based plume experiment as part of a study examining the potential environmental impacts resulting from exploring for and extracting seabed mineral deposits. We have to recover the three moorings, which we placed across the seamount at the start of the cruise to record hydrographic data over a 30 day period. We are also planning another series of ROV rock sampling dives and further AUV surveys. The RRS James Cook returns to Tenerife on the 8th December where some of the equipment will be offloaded for trials early next year on the RRS Discovery, which is also docked in Santa Cruz.

Paul Lusty
Co-Chief Scientist JC142

Friday, 25 November 2016

The International Conference in Paleoceanography 2016... by Sonja Felder and Rowan Dejardin

Hello everyone,

Rowan in discussion at this poster about the Holocene
paleoceanography in South Georgia (Southern Ocean).
It’s us again, Sonja and Rowan, two BGS BUFI PhD students. Recently we took part in the twelfth International Conference in Paleoceanography, aka “ICP”, in Utrecht, Netherlands. Held every three years, ICP is the biggest international paleoceanography conference, so it was unsurprising that some of the biggest names in the field turned up to present their work. This gave those of us new to the field a great opportunity to discuss our work and socialise with them at events like the conference dinner or the traditional “paleomusicology” concert.

The conference was structured so that a series of key-note lectures where given in the morning and the afternoons were taken up with poster sessions. The key-notes are generally given by up and coming researchers in the field, whose work is doing a significant amount to push forward the boundaries on paleoceanography. By convention, researchers will only give one talk at ICP in their entire career and the resulting talks providing a fascinating insight into the cutting edge research currently occurring. The conference also had a strong focus on the poster sessions: there were almost 700 posters from researchers from all stages of their careers, from PhD students, to postdocs and professors, including some of the most well-known names in the field.

Sonja in discussion at her poster about the
Mid-Pleistocene climate transition at
 IODP Site U1427 (Sea of Japan).
An obituary for Harry Elderfield, a giant in the field of paleoceanography who passed away in April this year, was given by Nick McCave of Cambridge University. The obituary ended with a very impressive demonstration of Elderfield’s impact on the field: those in the audience who are the “children” and “grandchildren” of Elderfield, having worked with him directly or being supervised by his former PhD students, were asked to stand, and a significant proportion of the audience did so. Next, all those who worked with the proxies Elderfield developed were asked to stand and virtually all attendees of the conference stood up and gave Elderfield a standing ovation for his life’s work.

On Friday afternoon the conference closed with “the big debate” during which the panel and the audience discussing the idea that the current trend towards more focus on resolving social issues arising from climate change may be a threat to the fundamental research in paleoceanography. To illustrate this the debate started by highlighting the number of times the word “paleoceanography” appears in the most recent IPCC report, and with this the impact our field has on policy makers, which turns out to be zero! What followed was a lively and spirited debate with delegates offering arguments to support the whole spectrum of opinions on this issue. Although we paleoceanographers believe the past is the key to the future and that ocean records are integral to unlocking the past, policy makers mainly use the present alone to try to understand the future. One of the main conclusions from the debate was that the field needs to go further to foster a better understanding, among other scientists, policymakers and the wider public, of the importance of paleoceanography to our ability to predict future climate changes, whether this be through interdisciplinary collaboration, outreach work, or other avenues.

All in all, ICP12 was a really, really good experience full of fascinating insights and we hope to be part of the next ICP, which will take place in 2019 in Sydney, Australia. By then, surely we will be the big shots, giving the talks!

Tuesday, 22 November 2016

The BGS Aurora Camera (AuroraCam) Ciaran Beggan

In early 2016, the Geomagnetism team decided to install an experimental camera at the Eskdalemuir observatory to see if we could observe the Aurora Borealis during times of heightened geomagnetic activity. The aurora are caused by large electrical currents flowing in the ionosphere around 110km above our heads. These current systems are normally found in an oval around the magnetic pole at high latitudes (such as over Iceland), but during geomagnetic storms the oval expands southwards and can move to lower latitudes.

When it does, the magnetic field recorded at our observatories starts to vary rapidly – first at the station furthest north in Lerwick (Shetland Islands), then in Eskdalemuir (the Scottish Borders) and, if the storm is large enough, in Hartland (Devon).  During these stormy periods, the aurora may become visible – though it’s not always guaranteed. The Geomagnetism team do try to issue alerts if we think the aurora may be visible in the next day or two.
Raspberry Pi with camera in its IP68 box. The lid
with a Perspex dome is to the left.

We decided to see if we could capture images of the aurora ourselves, by using a camera automatically triggered from magnetic field variations at an observatory. We’ve been working with Raspberry Pi computers for our School magnetometer project over the past few years so we are familiar with them. As you can now buy a cheap five mega-pixel camera for the Pi, it seemed a good system to experiment with. There is plenty of advice on the Internet about how to build a time-lapse camera like this.

Once the hardware had been built, the next step was to write the software to drive it. As the Raspberry Pi comes with the Python language, it seemed the obvious one to use.

We wrote a small piece of code to (a) check if it is dark and (b) to check if the geomagnetic activity measured at our observatories is high (above some particular threshold). If these conditions are met, the camera is triggered. It takes a six -second exposure. A timestamp is placed onto the image and a note is made into a log file and then the system goes to sleep for five minutes. The camera continues to take images every five minutes until the geomagnetic activity declines or the sun rises.

The camera was installed in June 2016.  The first task was to lay the cables for power and communications from the ground floor office to the roof. This involved passing a cable through two floors, a window and up to the balcony where we wanted to mount the camera. Once the wire was laid, the camera was mounted on some unused scaffolding.
From L-R: Tim Taylor mounting the camera on the roof, the camera is angled to point north and just captures the top of the
horizon in the image to the right; Camera pointing north on a typical (i.e. cloudy) day in Eskdalemuir.
Aurora pictures?
There have only been a few large storms since we set up the camera in June 2016. However, the camera has been triggered by a few periods of higher activity but usually it is raining or cloudy. The best image we have was captured at 4:34am on 28th September 2016. It shows stars and a very faint aurora on the horizon. The photo has been processed to increase the gain and the colours have been auto-corrected using an image processing package.
Image captured by the Eskdalemuir AuroraCam on 28/09/16 at 03:34 UT.
Future plans
We plan to add images of the aurora to our alert pages the following day once they have been processed. It will be interesting to see if this relatively cheap setup will survive the cold and stormy winter months in Scotland.

For more information on the Aurora Cam then visit the website here.

By Ciaran Beggan & Tim Taylor, with thanks to Ted Harris and Tony Swan.

Monday, 14 November 2016

Learning the fundamentals of continental scientific drilling with ICDP at GFZ, Potsdam…by Jack Lacey

The International Continental scientific Drilling Program (ICDP) is a global initiative that provides financial and operational support for multinational research teams to drill the Earth’s continental crust, with the principle aim of better understanding our Earth system through cutting-edge transdisciplinary scientific research. ICDP has supported drilling projects across the world to investigate a broad range of science themes, including geological hazards, natural resources, and palaeoclimate (see the extensive list here). The program comprises 24 member countries, and the UK has been an active member since 2012 funded by the British Geological Survey (ICDP-UK).
Key ICDP research themes (source:
Each year ICDP hosts a training course that covers the fundamentals of continental scientific drilling, and I was one of 29 scientists, including four other UK-based participants, selected to attend this year’s event hosted at the GFZ in Potsdam, Germany. The course is designed to provide a foundation in the theory and practical aspects of drilling for those involved in current and future ICDP projects, and is delivered through a series of lectures given by leading ICDP scientists. The sessions covered a comprehensive range of topics from drilling technologies, core sampling, and geophysical logging, to the importance of outreach, proposal writing, and data management – all in just under three days! Dr Virginia Toy from the University of Otago also gave us a fascinating look into the history and achievements of the Deep Fault Drilling Project, an on-going ICDP project that drilled into the Alpine Fault in New Zealand to investigate the processes of rock deformation and earthquakes.

Delegates of the 2016 ICDP training course on continental scientific drilling (courtesy of ICDP)

Imaging a core on the line scanning device at the
BGR Core Repository (the core is rotated
during a scan producing an ‘unrolled’ image
 of the whole outer surface)
The course is normally hosted by an active project to enable delegates to experience a drilling campaign first-hand. However, ICDP is celebrating its 20th anniversary in 2016 and so the training was held at the GFZ to coincide with an important workshop being attended by over a hundred invited scientists, funding organisation representatives and the media (see Melanie Leng’s recent blog) – a valuable networking opportunity. To cover some of the practical aspects of drilling projects the training course included a visit to the BGR Core Repository in Spandau, where we were shown how to image and log core sections, scan cores using XRF, and use a multi-sensor core logger.

Whilst in Potsdam I was able to visit the Sanssouci park that contains several palaces, including the Neues Palais built in the 18th century. One room, the Grottensaal (Grotto Hall), is particularly impressive being encrusted with over 24,000 shells, rocks and fossils – an idea for what to do with those rock collections back home perhaps?

A section of marble wall encrusted with geological specimens

Overall, the training course and workshop were extremely useful and provided a great opportunity to meet others involved in continental scientific drilling. If you are, or will be, involved in an ICDP drilling project I thoroughly recommend applying for next year’s course (details will be announced here).

By Jack Lacey (Centre for Environmental Geochemistry and Stable Isotope Facility, British Geological Survey). Jack is involved in the ICDP Scientific Collaboration on Past Speciation Conditions in Lake Ohrid (SCOPSCO) project.


Friday, 11 November 2016

JC142 MarineE-tech cruise to Tropic Seamount, north-east tropical Paul Lusty

Autosub 6000 being launched from the RRS James Cook to undertake a
24 hour multibeam, sidescan sonar and sub-bottom profile survey. 
We are now about two weeks into the RRS James Cook cruise, which departed from Santa Cruz, Tenerife on the 29 October. The current cruise forms part of the ‘Marine ferromanganese deposits - a major resource of E-tech elements (MarineE-tech)’ project. The project is funded by the NERC Security of Supply of Mineral Resources (SoS Minerals) Research Programme, which aims to understand ‘E-tech’ element cycling and concentration in natural systems, and determine how to minimise the environmental impacts of extraction. The ‘E-tech’ elements are those mineral raw materials critical to environmental technologies (e.g. cobalt, tellurium, selenium, gallium, indium and the heavy rare earth elements), and for which concerns about security of supply exist. MarineE-tech ( aims to improve understanding of E-tech element concentration in seafloor mineral deposits. The project partners involved in this cruise are the British Geological Survey (BGS), National Oceanography Centre (NOC), HR Wallingford, and the University of São Paulo, who are running a parallel research programme on Fe-Mn deposits on the Rio Grande Rise, funded by the São Paulo State Research Foundation (FAPESP).

Some of the E-tech elements are highly concentrated in hydrogenous ferromanganese (Fe-Mn) crusts, which develop on oceanic seamounts. The MarineE-tech study area is located in the north-east tropical Atlantic, about 650 km south of the Canary Islands (about 2 days sailing on the RRS James Cook), and at the south-west end of the Canary Island Seamount Province. The islands and more than 100 seamounts, which extend over a distance of some 1000 km form one of the most significant volcanic provinces in the Atlantic Ocean. Our research focuses on the Tropic Seamount, the southernmost in the archipelago (23.5° N, 20.4° W). Tropic Seamount has an area of about 770 square kilometres, comparable to the Island of Anglesey in North Wales. Previous, limited work has identified Fe-Mn crusts on this and a number of the other seamounts to the south of the Canary Islands.

Clockwise from top left: Typical exposure of Fe-Mn crust broken by pelagic sediment cover on the summit of Tropic
Seamount; ROV Isis collecting a Fe-Mn crust sample to be placed in the basket; A cut sample of Fe-Mn crust showing
distinctive layering that develops from accumulating on the seafloor over millions of years; The first batch of Fe-Mn crust
samples collected by Isis laid out in the laboratory an-board the James Cook. 
During the six week cruise we plan to assess the distribution and thickness of the Fe-Mn deposits, through a combination of high-resolution seafloor imaging and detailed sampling across the range of heterogeneous environments that exist on the seamount. The new samples will be used to characterise the gross geochemical composition of the crust, and the micro-scale mineralogical, textural, geochemical and isotopic composition of individual growth layers. This data will be used to assess the significance of the temporal and spatial environmental factors, and processes (including palaeo and modern oceanographic conditions e.g. seabed morphology, sedimentation rates, upwelling rates and microbiology) that control the compositional, textural and thickness characteristics of seafloor Fe-Mn deposits. We will also be collecting data on the seamount ecosystem, and conducting plume generation and modelling experiments to investigate the potential environmental impacts from exploring for and extracting Fe-Mn deposits. We plan to acquire bulk samples of Fe-Mn crusts, which will be used to assess the potential for the recovery of E-tech elements from these resources using novel, low energy (and low-carbon) extraction technologies such as bio-processing, ionic liquids and hollow fibre membranes. This work is being led by the University of Bath.

New ship-board multibeam swath bathymetry acquired over Tropic Seamount
that will be used to select areas for detailed follow-up mapping and sampling
To date we have been focusing on acquiring new bathymetry data across the seamount to inform subsequent mission planning. We are initially mapping the area using ship-board multibeam swath bathymetry (25 m resolution) and geoacoustic sub-bottom profiler. These data will be used to identify areas of rock outcrop (from acoustic backscatter), and sub-areas will be identified for detailed follow-up surveying using the NOC autonomous underwater vehicle (AUV) Autosub 6000, and the remotely operated vehicle (ROV) Isis. We have already conducted five AUV missions, principally to the test the Autosub 6000 for acquiring higher resolution swath bathymetry (1 m resolution), sidescan sonar (5 cm resolution), sub-bottom profiles (10 cm resolution), colour still images and magnetic data. We have 24 hours of operation on the ship, divided between two science shifts (17 scientists in total), so we are almost continuously acquiring new data.

The primary objective of the first ROV dive was deploy a seafloor lander platform on the summit of the seamount. This has been designed by HR Wallingford, with the objective of collecting time series data on the hydrographic regime and sediment movement in the water column across the seamount. During the cruise we plan to generate sediment plumes (in an attempt to simulate potential disturbance associated with seafloor mining) on the seafloor by sucking up pelagic sediment with the ROV and blowing it into the water column. The movement of the sediment plume will be monitored for several hours by a range of sensors on the lander and compared with results of previous modelling.  Additional hydrographic data will be obtained from three moorings that we have strategically positioned across the seamount. When we recover these at the end of the cruise they will have been deployed for at least 30 days, and provide a time series dataset on currents, temperature and conductivity (which can be corrected with temperature to give salinity) of the water column around the seamount. Additional data on the water column is being collected by numerous CTD deployment (we have undertaken 16 to date), which measure conductivity, temperature and depth (pressure), and can collect water samples for subsequent analysis.

From L-R: Manipulator arm of ROV Isis holding a tube from the sediment pump and generating a plume in the water column
to be detected by the lander; Seafloor lander placed on the seabed ready for monitoring and testing of plume. 
The majority of Fe-Mn crusts samples collected from seamounts globally have been acquired by dredging. This indiscriminate technique provides little or no spatial control on the location or depth from which material is acquired. The high resolution geochemical and isotopic research we are planning at BGS requires the acquisition of a new sample suite with good understanding of the spatial relationship between samples, in terms of their location on the seamount and water depths. In order to accomplish this we plan to collect samples from specific locations using the manipulator arms on the Isis ROV and a new core drill attachment, which NOC have specifically built for this project. The second Isis mission tested the core drill and obtained a 20 cm rock sample. During the ROV missions we are also mapping the distribution of sediments, Fe-Mn crust, other rock types and seafloor fauna using the high resolution cameras on Isis.

Paul Lusty

Co-Chief Scientist JC142

Wednesday, 9 November 2016

The first year of my PhD research: iodine geodynamics… by Olivier Humphrey

The shores of Lake Malawi.
Hi, my name is Olivier and I have just started the second year of my PhD at the Centre for Environmental Geochemistry (University of Nottingham and the BGS). My research revolves around iodine geodynamics and plant availability. In this blog I will provide a brief update of some of the work I have been doing over the past year.

Iodine is an essential micronutrient involved in the production of thyroid hormones. Approximately one-third of the world’s population has inadequate iodine intake, and this causes a spectrum of clinical and social issues, collectively known as Iodine Deficiency Disorders (IDD). Dietary supplementation, by means of iodised salt, is commonly used around the world to reduce the prevalence of IDD. However, iodine biofortification represents an area of active research as a cost effective strategy to address global iodine deficiency without the limitations associated with iodised salt. Despite this a much greater understanding of soil-plant uptake is required.

I’ve had a busy year becoming familiar with the extensive literature surrounding iodine geodynamics and plant uptake/availability, working on a review paper and planning/starting various experiments. One of my current experiments includes investigating the uptake mechanisms of iodine in spinach and tomato plants. These are two crops which have been shown to respond well to iodine treatments and have great potential for biofortification programmes. A series of experiments have been designed to investigate the uptake, translocation (from root to foliage and foliage to root) and storage in the mature plants. These experiments will include the use of stable radioactive iodine (I-129), by using multiple isotopes it will be possible to observe potential changes in chemical speciation (conversations between iodide and iodate) as the plant interacts with the iodine. Over the summer I was able to conduct an experiment to investigate where mature spinach and tomato plants predominately store iodine. I have now harvested and prepared the samples; I will perform the ICP-MS analysis very soon.

Peat bogs of Hautes-Fagnes. 
This summer, I attended my first international conference in Brussels for the Society for Environmental Geochemistry and Health’s (SEGH) annual conference, where I presented a poster summarising my PhD research. This was a great opportunity to meet other scientists from around the world with similar interests. We happened to be in Brussels for the Ommegang of Brussels which is an annual religious procession, naturally this involves people fighting on stilts and a huge wooden horse being paraded around Brussels’ Grand Place! On the final day, we went on a field trip to the peat bogs of Hautes-Fagnes, where we were given a talk about how the peat bogs were being used to look at the effects of industry on pollutant levels in the area.

I also participated in a 2 week Africa-UK doctoral training network capacity strengthening exercise. The network, established between the UK, Zambia, Zimbabwe, and Malawi, held their annual meeting in Lilongwe, Malawi this year. After the official opening meeting, which included multiple presentations from our various guests of honour and a brief appearance on national TV, it was time to get to work. The network is aimed at providing sustainable capacity strengthening in soil geochemistry and associated disciplines (see previous blog by Michael Watts). It was great to see all the Royal Society - Department for International Development (RS-DFID) PhD students, local scientists and lab technicians and catch up with their progress again after they visited the UK in May. The first week was based at the Department for Agricultural Research Services in Chitedze for training in soil chemistry, quality assurance and preparation of reference materials via lectures and participatory demonstrations from Dr. Charles Gowing and Dr. Michael Watts (BGS). I was also fortunate enough to visit Lake Malawi following a lecture in the field from Malawi’s leading pedologist Prof. Max Lowole and try some of the Lakes famous Chambo fish after a hot day in the African sunshine. The second week, based at LUANAR: Lilongwe University of Agriculture & Natural Resources, focused on generic training and included statistical analysis, GIS, ethical awareness and presentation skills, the sessions were run by Dr. Murray Lark (BGS), Prof. Amon Murwira (UoZ), Dr. Kate Millar (UoN) and Prof. Martin Broadley (UoN).

Prof. Max Lowole providing a lecture to the research group on a Malawian vertisol. 
Over the next few months I will continue with my plant experiments to identify uptake pathways and investigate translocation mechanisms when iodine is applied to the plants in the form of a foliar spray. These experiments will be based in the growth rooms at Sutton Bonington (UoN) and analysed at BGS, thereby maximising the resources made available to me through the Centre for Environmental Geochemistry, from which my funding originates. I am also planning an innovative soil experiment involving microdialysis probes that I hope to use to extract soil solution and analyse the chemical speciation over a short-term period using size exclusion chromatography (SEC). The use of SEC, coupled to ICP-MS, will enable me to look at different size fractions of iodine, including organically bound iodine. This will provide a much clearer understanding of how iodine behaves in soils shortly after rainfall or fertilization events when iodine is most available for plant uptake. By understanding the dynamic processes that occur during these events it will be possible to understand the factors that limit plant uptake.


The PhD is supervised under the umbrella of the Centre for Environmental Geochemistry:
Dr Scott Young, Dr Liz Bailey and Professor Neil Crout (University of Nottingham) and 
Dr Michael Watts and Dr Louise Ander (BGS)

Monday, 7 November 2016

The 20th year celebration of the International Continental scientific Drilling Program (ICDP) Melanie Leng

This October the ICDP celebrated 20 years since its formation in 1996. During this time ICDP has contributed funding to around 50 deep drilling projects including drilling into the San Andreas Fault, taking sediment cores from some of the biggest and oldest lakes in the world, and most recently (this summer) drilling the “ring peak” of the Chicxulub impact crater. Here Melanie Leng talks about the 20th year celebration event of the ICDP...

One hundred ICDP stakeholders from across the world and member countries
met at GFZ in Potsdam to discuss ICDP into the future. 
Over the last 20 years the ICDP program has grown both in member countries (now around 20) and funding. At present the ICDP supports on average 3-5 deep drilling projects a year spending much of the combined $5M annual membership fees on drilling contributions (usually between 20 – 40% of the drilling operations cost). For this 20th year celebration, ICDP held a 2 day event in which key stakeholders were invited to present and discuss the way forward for the program. We were asked to think about and discuss whether the Operations Support Group (who look after everything from supporting project and operations, to on site drilling expertise and oversight, data management and archiving, to training courses, outreach and events) needed to be changed.

Over the 2 days we discussed ways in which the operations could be bettered, for example ICDP staff helping more with the over sight of the drilling operations, ICDP having a greater equipment pool (especially for down hole logging) and attaining greater “reach” rather than outreach. Educating and training of our early career researchers was seen as a priority.

The ICDP now has the task of thinking about the suggestions of the 100 or so stakeholders. I am sure our discussions will help ICDP continue supporting the global geoscience community with great international research that is underpinned by the technically challenging and expensive drilling that ICDP enable.

One surprising outcome of the meeting was the discovery that ICDP did not have a Facebook page! This was soon rectified with the help of some of our social media users (take a look at

The UK is a member of ICDP and as such our geoscientists can propose and participate in world class geoscience research with teams made up from amongst the best in the world. Melanie Leng (@MelJLeng) is the UK lead for ICDP and represents the UK on the ICDP Executive Committee.

For more information have a look at the ICDP-UK website or the main ICDP website.

Tuesday, 1 November 2016

Hacking semantic paths to make BGS resources more accessible... by Rachel Heaven

Rachel Heaven works in geoinformatics, developing spatial databases, applications and standards to share and visualise geoscience information.

BGS ran an internal hackathon a couple of months ago and Team Semantic Search (starring Agelos Deligiannis, Rachel Heaven, Tim McCormick, Gemma Nash, Ike Nkisi-Orji, Marcus Sen) took on the challenge to implement a semantically and spatially intelligent search service.

The aim was to improve access to BGS's resources with an enhanced search tool that can cut through the tangle of complex geoscience terminology, and to improve navigation between information resources.

Why should we do this ?

BGS is custodian of a wealth of textual information, including the important observations and interpretations that accompanied BGS’s traditional core product, the hardcopy 2D geological map. Our digital-era information products make it easy to view interpretations of the spatial extent of geological properties but they are not easy to discover, are difficult for non-experts to understand and they are divorced from the documented evidence they are based on. These provenance links are increasingly important when information is used in decision making.

So how do we make a search "semantically intelligent"?

Well, if you do a regular web search or directory search for content, all you are matching is a sequence of letters. The search engine doesn't know that other terms mean the same thing, or are related to your search intent in some way, or that the term you are using has different meanings in different eras or contexts – all of which happens a lot in the long history of geoscience terminology. All of these problems mean that the user has to filter out "false positives" in the search results and often run repeated searches using the alternative terms that he/she knows about, potentially missing out on valid results, especially if they don’t know the experts’ terms.

But what if the experts who knew all about the terminology and all the relationships between the terms and the things (we call them concepts) had already captured all of that knowledge (we call that an ontology) ? And even better, if that was available in a machine readable form and the search engine could use it with some algorithms that made it behave as if it knew what your search term meant ? That is what we mean here by semantically intelligent.

The "spatially intelligent" bit means we also want the search engine to understand the various ways that locations are mentioned in unstructured text so that a user can find all information relevant to a chosen location no matter how it is represented.

The good news is that this has been a goal of the web community for some time (e.g. Tim Berners-Lee Semantic Web paper in 2001) and there are standards we can use to specify the terminology and tools to use them (e.g. W3C Data Activity that BGS are contributing to).

Furthermore, codifying geoscience terminology has been an activity of BGS for a long time - before any sniff of the semantic web - so we have some really mature vocabulary resources, some of which we published in the appropriate web standard form a few years ago, and we also work on internationally standardised vocabularies with the IUGS-CGI Geoscience Terminology Working Group.

To push things along further BGS have been supporting PhD research (with Robert Gordon University) into these topics, and our student Ike was able to join us at the hackathon and contribute algorithms he has written to use the ontologies.

So what happened during the hackathon ?

With handy post it notes on a flip chart, we identified 5 separate components to work on in parallel:
  1. document indexing for the search engine
  2. application to run the search service as a simple search
  3. extending the search service to use the ontologies
  4. web interface for search
  5. coordinate to placename converter
  6. links to the search from Groundhog Web virtual cross section and borehole viewer (as an example just because that’s an application that I develop anyway so know the codebase)
On task A, Rachel, Marcus and Ike worked together to install elasticSearch (open source search engine software) and used it to create an index of plain text terms in a set of BGS publications – no ontologies involved yet. After a few failed starts this was then left to cook overnight.

On task B, Marcus and Ike implemented Ike’s existing search application as an elasticSearch client to run a simple text search.
Indexing complete
Search service running
Search interface working

On task C, Gemma created a web front end to launch the search, display the results, highlight relevant terms in the pdf documents and to capture user evaluation of the search results – useful for Ike’s PhD. “High five at 11.25” moment on the second day when the search was working properly and the web interface submitted searches, showed results and highlighted the found terms in the pdf documents.

Tim McCormick concentrating
On task E, Tim started adapting (and then found it was quicker to write from scratch – hacking isn’t always the best option for a quick win then !) a few database functions in PL/SQL to create a gazetteer translation and expansion tool. This meant querying a corporate spatial database of OS administrative placenames, map sheet names, some geological feature names to convert a coordinate location to a list of placenames, and expanding a single placename to a list of all co-located placenames. This performs a similar function to Ike’s semantic comparison algorithm but in the geographic space. Marcus created a small web service that would work as an interface to Tim’s function.

Search links added to virtual borehole viewer
On task F, Agelos and I tried (and failed) to get the BGS Groundhog Web code to compile locally (new PC missing some vital configuration that we couldn’t pin down), and in the end I captured an example page from its output and hardcoded new links to Gemma’s search form and Marcus’s interface to Tim’s Gazetteer tool. Going great at 12.08 – even with a bit of cheating!

Existing BGS Lexicon entry for Vale of York Formation
On task C, Ike continued indexing the document collection using concepts in the geological timescale ontology (BGS Chronostratigraphy), and adapting the search engine to use that ontology in his query expansion, semantic comparison and relevance ranking algorithm. Agelos also developed some web scraping scripts to pick up BGS Lexicon terms from structured web pages so that search links could be applied in that way if we wanted.

Going like a dream at 13.17 ! Tasks A,B,D,E,F complete and ready to demonstrate at the final presentation at 2pm. Task C was always going to be the tricky bit so we weren’t too worried that it wasn’t finished yet.

At the close of the hackathon we were able to demonstrate the web front end to the search and show it running to retrieve text-matched results from the indexed document collection.  We also demonstrated a Groundhog virtual cross section from the Vale of York 3D model with new context sensitive “Search publications” links from the legend of model layers that open the search form pre-populated with the placenames and geological time or formation name term relevant to that part of the cross section. Just after the hackathon, and just a little too late to demonstrate, Ike managed to plug in the full semantic comparison algorithm using the Chronostratigraphy ontology, completing Task C.

The hackathon judging panel were impressed at how much we achieved and were excited about the possibilities and the way it could help users discover and navigate through our wealth of resources. We all enjoyed working in a new environment and with a different team of people to usual – despite the extreme heat on those days ! On a personal level this team effort brought together various strands of work that I have been working on – sometimes in the sidelines - for a number of years so it was really satisfying to finally have something to show. Huge thanks to all the great team members.

What happens next ?

We would like to build on the work we did to
  • implement a more robust version on our intranet for staff to assess
  • add further ontologies to the search tool
  • use third party online data sources or APIs for some of the gazetteer translation and expansion service rather than having to maintain our own copies of OS data
  • index documents by location by geoparsing for recognisable coordinates, or proxies for locations such as borehole registration numbers
  • provide a similar application on the BGS external website to search publications, showing snippets of documents and links to the BGS shop if the publication is not open access
  • eventually implementing a single point of entry to search and navigate through all BGS website resources

Wednesday, 26 October 2016

Getting a Read on Radon: measurement of radon activity in groundwater samples from a proposed fracking site - a student project! James Dinsley

My name is James Dinsley, an Environmental Science student from the University of Nottingham and I am currently a quarter of the way through a one-year placement with the British Geological Survey, working in the Inorganic Geochemistry Laboratories in Keyworth, Nottingham. Over my year with the BGS, I have been supporting projects with Dr Charles Gowing and Dr Andy Marriott looking at the development and validation of (i) a method for determining the amount of radon in groundwater and its application to environmental baseline monitoring at proposed shale gas exploration sites, and (ii) a method of using a form of radioactive lead (210Pb) to determine the age of lake sediments. I will also be working in the aqueous chemistry laboratories, where I will use different chemical tests to analyse the composition of water samples for clients. As part of my work, I have learned how to conduct key laboratory tests such as determining soil pH and organic matter content, water pH and alkalinity, electrical conductivity and total organic carbon.

What does radon have to do with shale gas and fracking?

Fracking is a controversial topic due to public concern about it’s potential environmental and health risks. The process of fracking creates micro-fractures in the target shale rock to release natural gas (methane) for energy supply. One area of concern with fracking and the shale-gas development more generally is the possible release of naturally occurring radioactive materials (NORMs) contained in the shale, e.g. radon (222Rn), a known carcinogen, either as a gas or dissolved in the produced water that also comes up the shale gas well. Human exposure to radon is known to present a health risk if it is not adequately controlled.

In order to understand the potential additional risks that might arise from shale gas operations, a clearer understanding of the baseline groundwater chemistry is needed in areas around proposed development sites.

What have we found so far?

Libby preparing the samples for analysis to
determine radon concentration. 
Charles, Andy and Libby Gallanaugh, the previous placement student from the University of Surrey, refined a method for looking at the emission of alpha particles (a type of radiation) from the radioactive decay of radium (226Ra) in order to quantify the amount of radon present in groundwater samples. To do this, organic chemicals called ‘scintillators’ are used to convert the energy generated by alpha particle emission into light, which is then measured by a detector. More light pulses will indicate a higher amount of radon in the samples.
Libby’s work has identified the most suitable scintillator type and an appropriate scintillator/sample ratio to use, alongside helping to determine the most efficient analytical run time needed. Her results have helped to enhance both the counting efficiency of the detector and improve the quality of the results. It is hoped that the technique that Charles, Andy and Libby were working on could be used directly in the field to reduce the length of time that radium has to decay before analysis.

What are the next steps?

Alongside my duties in the aqueous lab, I will continue to further this research by investigating both the influence of sample temperature on the detector’s ability to quantify the radon concentration; and the influence that major ions in water (e.g. chloride, bicarbonate, etc.) can have on the detector’s readings, since water collected from different environments and rock types will have different chemical compositions! This work will help to ensure that the quantification of radon from field samples are more accurately represented despite variation in where and when sampling takes place.

During my time with the BGS I will also be working on another project, looking at refining a method for using a radioactive lead isotope (210Pb) to determine the age of Malaysian lake sediments. Ageing these sediments will help to reconstruct past pollution events from possible human activities. 210Pb dating can show us changes in sediment deposition over time, which is key as this can lead to changes in the lake’s physical and chemical characteristics. By using data collected from 210Pb dating, decision makers will then be able to determine the best method to remediate contaminated lakes. This project is being run in collaboration with the University of Nottingham through the joint Centre for Environmental Geochemistry.

I am enjoying my time with the BGS so far, and I am looking forward to getting involved with learning and experiencing as much as possible, alongside having the opportunity to meet many more people!